
  

 

Abstract—This paper explores the impact of reweighting the 

minority class of an imbalanced fraud dataset on the 

performance of an XGBoost binary classifier. Classifier 

performance is measured here in terms of true positive rate, 

false positive rate, precision, accuracy, AUC-ROC and AUC-PR. 

Our results suggest that reweighting the minority class has 

significant impact on these four key performance metrics when 

the classification threshold is held fixed and the model bias is not 

corrected. However, this impact becomes insignificant when (1) 

classification threshold is held fixed and the bias is corrected, or 

(2) when the target number of predicted positives is held fixed. 

Since fraud detection often prescribes a target number of cases 

for special treatment, these findings suggest that reweighting a 

dataset offers performance advantage only under very specific 

conditions for XGBoost-based classifiers. These conclusions can 

also generalize to problems where certain resampling 

techniques are used instead of reweighting since the two 

approaches tend to converge for sufficiently large datasets. 

 
Index Terms—XGBoost, binary classifiers, class imbalance, 

reweighting, resampling, bias-variance tradeoff.  

 

I. INTRODUCTION 

A common situation that arises with binary classification 

problems is where Type I and Type II errors have asymmetric 

costs. For example, it may be more problematic for a fraud 

detector to incorrectly miss a fraud (false negative, or Type II 

error) than it is to incorrectly flag a non-fraud (false positive, 

or Type I error) because the business cost of the former 

outweighs the cost of the latter. 

A standard practice amongst teams developing such 

classifiers is to resample or reweight one of the classes 

(usually to upweight the minority class) with the intent of 

improving some measure of classifier performance. This 

skews the decision boundary in favor of the minority class, 

making this class easier to detect. Such practice is common 

with logistic regression and even tree-based methods such as 

decision trees and random forests. However logistic 

regression models can suffer from high bias because they are 

linear in the log odds and therefore the decision boundary is 

linear too. On the other hand, many tree-based methods often 

suffer from high variance because they use simple heuristics 

for controlling model complexity (or bagging, in the case of 

random forests). This study investigates the effect of 

reweighting the minority class of an imbalanced training 

dataset on certain key performance metrics of an XGBoost 

binary classifier. 
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XGBoost, or Extreme Gradient Boosting, is a type of 

supervised machine learning algorithm. It is widely used due 

to its accuracy and speed when working with a large amount 

of data in a distributed or memory-limited computing 

environment. The library is available as an open-source 

Python package1, GPU-optimized for handling large datasets 

[1].

 

XGBoost adopts a more principled approach to controlling 

model complexity by formally including a regularization term 

in its objective function. This careful control of model 

complexity mitigates overfitting and generalizes well to 

unseen data [2]. Therefore, an appropriately regularized 

XGBoost model with sufficient number of estimators is able 

to adequately capture the highly nonlinear decision 

boundaries of minority classes such as fraud much better than 

other supervised learning techniques. We find accordingly 

that since reweighting a minority fraud class does not add any 

new information to the dataset, reweighting has little impact 

on XGBoost model performance for fraud detection problems. 

We also note that upweighting an observation is formally 

equivalent to upsampling via duplication, while 

downweighting an observation is approximately equivalent to 

downsampling (modulo the slight information loss from 

discarding observations). Both these techniques, in turn, 

correspond to changing the ratio of the positive to negative 

class count. This equivalency allows the findings of this study 

to generalize to cases where the class imbalance ratio is 

changed simply via moderate resampling (so that the classes 

within the downsampled data are still representative). 

Our findings suggest that reweighting the fraud class of a 

dataset has significant impact on XGBoost classifier 

performance when the classification threshold is held fixed. 

However, reweighting a dataset introduces a bias to the 

output of the classifier, where the bias is a function of the 

amount of reweighting applied. When this bias introduced by 

reweighting the dataset is corrected, we see little impact on 

XGBoost classifier performance. In addition, we also see 

little impact on XGBoost classifier performance when the 

target number of predicted positives is held fixed (due to, for 

example, cost constraints around manual processing of 

predicted positives).

 

In other words, substantial performance improvements in 

an XGBoost classifier on imbalanced fraud datasets should 

not be expected when the classification threshold is held fixed 

unless the user is willing to 1) introduce a bias (which may be 

appropriate if, for example, the cost of a Type 2 error is 
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significantly different from the cost of a Type 1 error), or 2) 

somehow introduce new information into the system.  

The rest of the paper is organized as follows. Section II 

provides a survey of some of the latest work using XGBoost-

based classifiers for anomaly detection, especially fraud 

problems. Section III describes the key metrics used to 

evaluate model performance in this study, along with a 

description of the XGBoost model and dataset. Section IV 

presents the results of model performance with minority class 

reweighting measured as a function of two different cutoffs: 

probability cutoff and percentile cutoff. We also consider a 

de-biasing technique to correct for the reweighting. A 

summary and discussion around future work is presented in 

Section V. 

 

II. RELATED WORK 

Owing to its scalability and performance, XGBoost has 

been successfully applied to a broad scope of fields such as 

credit risk assessment [3], cancer diagnosis [4]-[8], epilepsy 

diagnosis [9] and pedestrian detection [10]. In [3], classifiers 

based on XGBoost, logistic regression, self-organizing 

algorithms and support vector machine are used to assess 

credit risk for financial institutions, with XGBoost found to 

outperform the other three classifiers. In [9], an XGBoost-

based model is used in an epilepsy study to classify 

participants as healthy patients or patients with epilepsy. This 

classification is made using patterns of language networks 

identified using fMRI scans. In [10], a genetic search 

algorithm is used to optimize the hyperparameters of an 

XGBoost-based classifier which is used to detect whether an 

image contains a pedestrian. The model is found to 

outperform the benchmark model based on support vector 

machines. In addition, XGBoost is also the supervised 

learning method used by several winning teams of Kaggle 

competitions (see [11] and [12]). 

Recent works ([13]-[14]) in intrusion/anomaly detection 

have reported good performance using model formulations 

that comprise of XGBoost-based classifiers. In [13], an 

XGBoost-based classifier is trained on a dataset whose size is 

reduced by a hybrid PCA-firefly algorithm. This proposed 

model is shown to outperform benchmark models based on 

PCA, random forest and support vector machines. In [14], an 

ensemble model containing an XGBoost classifier is trained 

on features identified using a Crow-Search algorithm. The 

proposed model is shown to have a superior precision, recall 

and accuracy compared to state-of-the-art models.  

Since XGBoost is based on gradient boosting, it can 

rapidly learn outliers, making it appealing for datasets with 

highly imbalanced classes [15]. In fact, XGBoost has been 

found to perform particularly well for fraud detection use 

cases (see [16]-[19]). In particular, [16] provides a 

benchmark for various XGBoost-based classifiers trained on 

two imbalanced credit card datasets. 

 

III. METHODOLOGY 

A. Performance Metrics 

The key performance metrics considered in this study are 

true positive rate (𝑇𝑃𝑅 or recall), false positive rate (𝐹𝑃𝑅 or 

Type I error), precision and accuracy, defined as: 
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where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁  and 𝐹𝑁  are the number of true/false 

positives and true/false negatives respectively and 𝑃 and 𝑁 

are the total number of positive and negative classes 

respectively. These four performance metrics are standard 

primary metrics for binary classifiers as most other non-

global secondary metrics can be inferred from a combination 

of these. For example, true negative rate (𝑇𝑁𝑅) and false 

negative rate (𝐹𝑁𝑅 or Type II error) are just the complement 

of 𝐹𝑃𝑅  and 𝑇𝑃𝑅  respectively. Furthermore, if all four of 

these metrics can be shown to be insensitive to the effect of 

reweighting the minority class, then most secondary metrics 

are expected to be insensitive too. 

This study also examines the area under the curve (AUC) 

of the Receiver Operating Characteristic (ROC) and 

Precision-Recall (PR) curves. PR-AUC gives the average 

precision over the recall and ROC-AUC gives the probability 

that the classifier will rank a randomly chosen positive 

instance above a randomly chosen negative instance. Larger 

values indicate better classifiers. 

B. XGBoost 

XGBoost consists of an ensemble of learners (decision 

trees in this case), taking the form: 

                            �̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

, 𝑓𝑘 ∈ ℱ                                 (5) 

where 𝐾 is the number of learners (in this case, trees), 𝑓
𝑘
(𝑥𝑖) 

is the output (or score) of the 𝑘𝑡ℎ
 learner, and ℱ  is the 

functional space of 𝑓
𝑘
. 

Unlike other ensemble decision tree models such as 

random forests, XGBoost is based on the gradient boosting 

algorithm, introduced by [20]. Therefore, each tree is trained 

and added sequentially as a function of the dataset and the 

output of the previous trees. The output of the model at step 

𝑡 is thus given by:  

                                �̂�𝑖
(𝑡)

= �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖).                              (6) 

This leads to the following form of the objective function 

to be optimized at step 𝑡: 

    𝑜𝑏𝑗(𝑡) = ∑ 𝑙 (𝑦
𝑖
, �̂�
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(𝑡)
+ 𝑓
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) + 𝑐𝑜𝑛𝑠𝑡,    (7) 

where 𝑛 is the number of data points, 𝑙 is a customizable loss 

function and Ω is a regularization term. A Taylor expansion 

of the loss function then leads to the familiar XGBoost 

objective function. For a detailed discussion, see [21]. 

To understand the impact on model performance of 

reweighting the minority class of an imbalanced dataset, five 
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XGBoost models are trained. Each model is trained 

separately on a dataset with a different reweighting factor on 

the minority class. All five models are then scored on the 

same (unweighted) validation set which reflects the dataset 

on which the model will be used. 

These five models span 100X, 10X, 1X (unweighted), 

0.1X and 0.01X weightings on the minority class. Since 

reweighting the minority class by 10X, for instance, is 

equivalent to decreasing the ratio of the majority-to-minority 

class by the same factor2, these five choices of weightings 

correspond to different majority-to-minority class ratios. 

Since the amount of reweighting straddles four orders of 

magnitude (0.01X to 100X), a comparison of these models 

offers insight into the impact of reweighting on model 

performance for a wide range of weights. 

Hyperparameters are held fixed across the five models. The 

choice of XGBoost hyperparameters used in this study are 

stated in Table I. The default hyperparameter values of the 

Python package were used for all other hyperaparameters. 

 
TABLE I: XGBOOST HYPERPARAMETERS FOR THE FIVE MODELS 

‘num_round’ = 600 ‘max_depth’ = 3 

‘objective’=‘binary:logistic’ ‘gamma’ = 1 

‘colsample_bytree’ = 0.8 ‘alpha’ = 1 

‘subsample’ = 0.8 ‘eta’ = 0.1 

 

C. Dataset 

The dataset used in our study consists of 160 explanatory 

variables and a target binary variable for fraud. The training 

and validation sets consist of 1.8M and 0.8M observations 

respectively. The dataset represents a type of credit card fraud 

whose characteristics are left vague to maintain 

confidentiality. But importantly, it is a highly imbalanced 

dataset with a positive class ratio of around 2.7%. This 

corresponds to a non-fraud : fraud ratio of approximately 

36.5:1 and so the four reweighting factors of 100X, 10X, 

0.1X and 0.01X correspond to a non-fraud to fraud ratio of 

approximately 0.365:1, 3.65:1, 365:1, and 3650:1 

respectively. 

 

IV. EXPERIMENTAL RESULTS 

A. Classifying Predictions by Probability Cutoff 

We begin by investigating the effect of reweighting the 

minority class on the four metrics as a function of probability 

cutoff, also known as classification threshold. Classification 

threshold here is defined as the probability value above which 

an observation is classified as a member of the positive 

(minority) class. For example, a classification threshold of 0.6 

means that only those observations with a model probability 

of 0.6 or higher are assigned a positive class prediction. As 

this classification threshold increases, a higher probability is 

required for any observation to be assigned a positive class 

and hence the number of positive class predictions declines. 

This is demonstrated in Fig. 1.  

Fig. 1 shows that upweighting the minority class 

monotonically increases both TPR (recall) and FPR as a 

function of classification threshold. This behavior is expected 

 
2 https://github.com/dmlc/xgboost/issues/144 

because upweighting the minority class effectively introduces 

a positive bias in the classifier, making it more likely that both 

negative and positive cases are classified as positive. This 

increases both the true and false positive rates. 

 

 
Fig. 1. Comparison of primary performance metrics of five (biased) models 

at varying classification thresholds (probability cutoffs). 

 

Further, although both the true and false positive rates 

increase, Fig. 1 also shows that minority class upweighting at 

a given classification threshold causes a larger fractional 

increase in the false positive rate than the true positive rate. 

Combining (1) and (2) gives: 

                                
𝐹𝑃

𝑇𝑃
= 𝛼

𝐹𝑃𝑅

𝑇𝑃𝑅
                                          (8) 

where 𝛼 > 0 is the class imbalance, defined as the ratio of 

negative to positive observations (or 36.5 in the case of 1X 

weighting). Therefore minority class upweighting increases 

the 𝐹𝑃𝑅/𝑇𝑃𝑅 ratio, and hence also the 𝐹𝑃/𝑇𝑃 ratio, which 

from (3) leads to the observed decrease in the precision of the 

classifier at a given classification threshold. 

Finally, although introducing this positive bias to the 

model increases the absolute number of predicted positives, 

it decreases the absolute number of predicted negatives by an 

even larger amount because the high degree of class 

imbalance within the dataset means that there are far more 

negative than positive cases. Therefore from (4) it is evident 

that the decrease in 𝑇𝑃 + 𝑇𝑁  leads to a drop in accuracy 

when the minority class is upweighted. This is demonstrated 

in Table II. 

 
TABLE II: KEY PERFORMANCE METRICS AT A CLASSIFICATION 

THRESHOLD OF 0.6 FOR THE 0.01X, 1X AND 100X MODELS 

Performance metric 0.01X model 1X model 100X model 

TPR 26.3% 66.4% 94.0% 

FPR 0.0% 0.2% 6.2% 

Precision 99.6% 90.6% 29.1% 

Accuracy 98.0% 98.9% 93.8% 

 

Therefore at a given classification threshold, the positive 

bias introduced by upweighting the minority class causes a 

monotonic increase in TPR and FPR while generally 

decreasing the precision and accuracy. 

However, an “apples-to-apples” comparison between the 

five models should first correct for the varying degrees of 

model bias that is artificially introduced by the different 

upweighting factors. A common way to correct for this bias 

(as in [22]) is to scale the minority class odds by the amount 

of reweighting applied: 
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                                  𝑝 =
𝑝′

𝑝′ + (1 − 𝑝′) ∗ 𝛽
                            (9) 

where 𝑝  is the unbiased (corrected) probability, 𝑝′  is the 

biased (uncorrected) probability and 𝛽  is the reweighting 

factor applied to the minority class. Under this transformation, 

the corrected probabilities lead to the performance results 

shown in Fig. 2.  

 
Key performance metrics vs classification threshold 

 
Fig. 2. Comparison of primary performance metrics of five de-biased 

models at varying classification thresholds (probability cutoffs). 

  

Therefore once the bias has been corrected, neither 

upweighting nor downweighting the minority class has 

substantial impact on performance metrics when 

classification threshold is held fixed. 

B. Classifying Predictions by Percentile Cutoff 

Many use cases require a fixed target number of predicted 

positives. This is done by selecting the observations with the 

largest probabilities. In the case of fraud, each positive case 

usually needs to be manually reviewed and this target number 

is set by business based on available resources and funding 

constraints. Therefore, in such instances it is more relevant to 

investigate the relationship between the key performance 

metrics and the reweighting factor while fixing the percentile 

cutoff rather than the probability cutoff. 

 

 
Fig. 3. At a fixed percentile cutoff, upweighting the minority class has 

negligible impact on TPR, FPR, precision and accuracy of the classifier. 

 

Unlike probability cutoff, percentile cutoff is linearly 

proportional to the total number of negative predictions. For 

example, a percentile cutoff of 90% means that the classifier 

assigns a positive prediction to the top 10% highest 

probability cases and assigns a negative prediction to the rest. 

As percentile cutoff increases, fewer observations get 

classified as positive. Fig. 3 shows the four performance 

metrics as a function of the percentile cutoff. 

In contrast to Fig. 1 which shows that the performance 

metrics change monotonically with increasing upweighting 

of the minority class when bias is uncorrected, Fig. 3 shows 

that when the percentile cutoff is fixed, the four performance 

metrics are largely insensitive to the minority reweighting 

factor. Note that this insensitivity persists even after 

correcting for bias because the monotonicity of the bias-

correction transformation (9) maintains the same rank order 

of the probabilities.  

It is also instructive to examine the area under the curve 

(AUC) of the Receiver Operating Characteristic (ROC) 

curves and Precision-Recall (PR) curves. Given the relative 

insensitivity of the four performance metrics to the minority 

reweighting factor, the AUCs are expected to not change 

substantially with changing reweighting factors. This is 

confirmed in Fig. 4. The difference in AUC performance 

between the five models is less than 2%. 

 

 
Fig. 4. ROC curve and PR curve of the five models with different minority 

class reweighting factors. 

 

As a final comparison, we examine the rank order 

correlation between the five classifiers, based on the five 

separate weightings used. The rank order correlation provides 

a measure of the correlation between each classifier's 

rankings of fraud likelihood for all observations. Fig. 5 shows 

that, as expected, the correlation decreases monotonically as 

the difference in reweighting factors between two classifiers 

increases. 

However the rank correlation is very high (approximately 

0.9) even for models with reweighting factors that differ by 

four orders of magnitude (i.e. 0.01X and 100X). This high 

rank correlation implies that mostly the same observations are 

being classified as positive in the two models, which 

effectively leads to very similar model performance for 

different classifiers when the percentile cutoff is held fixed.  

Since the XGBoost models have a sufficient number of 

estimators whilst being sufficiently well-regularized, all five 

models are adequately capturing the varying degrees of 

minority class frequency within the data. This leads to the 

high rank correlation between all five models. 
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As before, note that reweighting is not introducing any new 

information to the system. Also, the de-biasing formula (9) 

monotonically transforms the predicted probability of an 

observation being positive without changing the rank 

ordering of the observations. Therefore these results 

generalize to cases where the model biases introduced by 

reweighting have not been corrected. 
 

 
Fig. 5. Although the rank correlation between classifiers decreases 

monotonically as the difference in weightings between the classifiers 

increases, the correlations remain very high which leads to very similar 

model performance at a fixed percentile cutoff. 

 

V. CONCLUSION 

XGBoost is both flexible and well-regularized. This allows 

for better treatment of the bias-variance tradeoff. Therefore 

an XGBoost model with optimized hyperparameters to 

control for both bias and variance is well-suited to handling 

highly imbalanced datasets. As such, reweighting the 

minority class has little impact on model performance. 

Specifically, we find that: 

1. At a fixed probability cutoff (classification threshold), 

increasing the weight of the minority class introduces a 

bias in the classifier which causes the TPR (recall) and 

FPR to generally increase and precision and accuracy to 

decrease. However when this bias is corrected, 

reweighting has little impact on key performance metrics. 

2. At a fixed percentile cutoff, the effect on key 

performance metrics of reweighting the minority class is 

again negligible. This also includes ROC-AUC and PR-

AUC. Given cost constraints, percentile cutoffs are more 

relevant than classification thresholds from a business 

perspective. Therefore reweighting a training set with the 

aim of improving classifier performance is unlikely to 

offer any performance benefit to a business. 

3. As the difference in the minority class reweighting factor 

between two models increases, their rank order 

correlation declines monotonically, though the decline is 

marginal. 

4. To establish the generalizability of the above conclusions, 

the same analysis was separately reproduced on a 

different fraud dataset with an even more imbalanced 

class ratio of 0.8% using a different (random) choice of 

hyperparameters. 

5. Since upweighting an observation is formally equivalent 

to upsampling it, while downweighting an observation is 

approximately equivalent to downsampling it (modulo 

the slight information loss caused by discarding 

observations), the conclusions from this study may be 

generalized to other XGBoost models where the minority 

class is upsampled or the majority class is moderately 

downsampled. 

 

XGBoost is one of several gradient boosting algorithms. 

Other such algorithms include LightGBM [23], CatBoost [24] 

and AdaBoost [25]. These algorithms work in a way similar 

to XGBoost but with key differences. For example, 

LightGBM uses Gradient-Based One-Sided Sampling 

(GOSS) to find the optimum split points; CatBoost (short for 

Categorical Boosting) specializes in categorical features; and 

Adaboost (short for Adaptive Boosting) modifies the sample 

distribution by weighting the data points for each iteration. 

Since these techniques, like XGBoost, use boosting to focus 

the subsequent weak learners disproportionately on 

misclassified observations, their performance is likely 

similarly insensitive to minority class reweighting. Future 

scope of the current work involves quantifying this 

performance impact by performing a similar analysis on these 

gradient boosting-based algorithms.  
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