

Abstract—This paper explores the impact of reweighting the

minority class of an imbalanced fraud dataset on the

performance of an XGBoost binary classifier. Classifier

performance is measured here in terms of true positive rate,

false positive rate, precision, accuracy, AUC-ROC and AUC-PR.

Our results suggest that reweighting the minority class has

significant impact on these four key performance metrics when

the classification threshold is held fixed and the model bias is not

corrected. However, this impact becomes insignificant when (1)

classification threshold is held fixed and the bias is corrected, or

(2) when the target number of predicted positives is held fixed.

Since fraud detection often prescribes a target number of cases

for special treatment, these findings suggest that reweighting a

dataset offers performance advantage only under very specific

conditions for XGBoost-based classifiers. These conclusions can

also generalize to problems where certain resampling

techniques are used instead of reweighting since the two

approaches tend to converge for sufficiently large datasets.

Index Terms—XGBoost, binary classifiers, class imbalance,

reweighting, resampling, bias-variance tradeoff.

I. INTRODUCTION

A common situation that arises with binary classification

problems is where Type I and Type II errors have asymmetric

costs. For example, it may be more problematic for a fraud

detector to incorrectly miss a fraud (false negative, or Type II

error) than it is to incorrectly flag a non-fraud (false positive,

or Type I error) because the business cost of the former

outweighs the cost of the latter.

A standard practice amongst teams developing such

classifiers is to resample or reweight one of the classes

(usually to upweight the minority class) with the intent of

improving some measure of classifier performance. This

skews the decision boundary in favor of the minority class,

making this class easier to detect. Such practice is common

with logistic regression and even tree-based methods such as

decision trees and random forests. However logistic

regression models can suffer from high bias because they are

linear in the log odds and therefore the decision boundary is

linear too. On the other hand, many tree-based methods often

suffer from high variance because they use simple heuristics

for controlling model complexity (or bagging, in the case of

random forests). This study investigates the effect of

reweighting the minority class of an imbalanced training

dataset on certain key performance metrics of an XGBoost

binary classifier.

Manuscript received June 16, 2021; revised December 27, 2021. This

work was supported by J.P.Morgan Chase & Co.

The authors are with the MRG Machine Learning Center of Excellence at

J.P.Morgan Chase & Co. in Manhattan, NY 10016, USA (e-mail:

XGBoost, or Extreme Gradient Boosting, is a type of

supervised machine learning algorithm. It is widely used due

to its accuracy and speed when working with a large amount

of data in a distributed or memory-limited computing

environment. The library is available as an open-source

Python package1, GPU-optimized for handling large datasets

[1].

XGBoost adopts a more principled approach to controlling

model complexity by formally including a regularization term

in its objective function. This careful control of model

complexity mitigates overfitting and generalizes well to

unseen data [2]. Therefore, an appropriately regularized

XGBoost model with sufficient number of estimators is able

to adequately capture the highly nonlinear decision

boundaries of minority classes such as fraud much better than

other supervised learning techniques. We find accordingly

that since reweighting a minority fraud class does not add any

new information to the dataset, reweighting has little impact

on XGBoost model performance for fraud detection problems.

We also note that upweighting an observation is formally

equivalent to upsampling via duplication, while

downweighting an observation is approximately equivalent to

downsampling (modulo the slight information loss from

discarding observations). Both these techniques, in turn,

correspond to changing the ratio of the positive to negative

class count. This equivalency allows the findings of this study

to generalize to cases where the class imbalance ratio is

changed simply via moderate resampling (so that the classes

within the downsampled data are still representative).

Our findings suggest that reweighting the fraud class of a

dataset has significant impact on XGBoost classifier

performance when the classification threshold is held fixed.

However, reweighting a dataset introduces a bias to the

output of the classifier, where the bias is a function of the

amount of reweighting applied. When this bias introduced by

reweighting the dataset is corrected, we see little impact on

XGBoost classifier performance. In addition, we also see

little impact on XGBoost classifier performance when the

target number of predicted positives is held fixed (due to, for

example, cost constraints around manual processing of

predicted positives).

In other words, substantial performance improvements in

an XGBoost classifier on imbalanced fraud datasets should

not be expected when the classification threshold is held fixed

unless the user is willing to 1) introduce a bias (which may be

appropriate if, for example, the cost of a Type 2 error is

altan.allawala@gmail.com, anand.k.ramteke@jpmchase.com,

pavan.wadhwa@jpmorgan.com).

1 https://github.com/dmlc/xgboost

Performance Impact of Minority Class Reweighting on

XGBoost-based Anomaly Detection

Altan Allawala, Anand Ramteke, and Pavan Wadhwa

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

143doi: 10.18178/ijmlc.2022.12.4.1093

mailto:altan.allawala@gmail.com
mailto:anand.k.ramteke@jpmchase.com
mailto:pavan.wadhwa@jpmorgan.com

significantly different from the cost of a Type 1 error), or 2)

somehow introduce new information into the system.

The rest of the paper is organized as follows. Section II

provides a survey of some of the latest work using XGBoost-

based classifiers for anomaly detection, especially fraud

problems. Section III describes the key metrics used to

evaluate model performance in this study, along with a

description of the XGBoost model and dataset. Section IV

presents the results of model performance with minority class

reweighting measured as a function of two different cutoffs:

probability cutoff and percentile cutoff. We also consider a

de-biasing technique to correct for the reweighting. A

summary and discussion around future work is presented in

Section V.

II. RELATED WORK

Owing to its scalability and performance, XGBoost has

been successfully applied to a broad scope of fields such as

credit risk assessment [3], cancer diagnosis [4]-[8], epilepsy

diagnosis [9] and pedestrian detection [10]. In [3], classifiers

based on XGBoost, logistic regression, self-organizing

algorithms and support vector machine are used to assess

credit risk for financial institutions, with XGBoost found to

outperform the other three classifiers. In [9], an XGBoost-

based model is used in an epilepsy study to classify

participants as healthy patients or patients with epilepsy. This

classification is made using patterns of language networks

identified using fMRI scans. In [10], a genetic search

algorithm is used to optimize the hyperparameters of an

XGBoost-based classifier which is used to detect whether an

image contains a pedestrian. The model is found to

outperform the benchmark model based on support vector

machines. In addition, XGBoost is also the supervised

learning method used by several winning teams of Kaggle

competitions (see [11] and [12]).

Recent works ([13]-[14]) in intrusion/anomaly detection

have reported good performance using model formulations

that comprise of XGBoost-based classifiers. In [13], an

XGBoost-based classifier is trained on a dataset whose size is

reduced by a hybrid PCA-firefly algorithm. This proposed

model is shown to outperform benchmark models based on

PCA, random forest and support vector machines. In [14], an

ensemble model containing an XGBoost classifier is trained

on features identified using a Crow-Search algorithm. The

proposed model is shown to have a superior precision, recall

and accuracy compared to state-of-the-art models.

Since XGBoost is based on gradient boosting, it can

rapidly learn outliers, making it appealing for datasets with

highly imbalanced classes [15]. In fact, XGBoost has been

found to perform particularly well for fraud detection use

cases (see [16]-[19]). In particular, [16] provides a

benchmark for various XGBoost-based classifiers trained on

two imbalanced credit card datasets.

III. METHODOLOGY

A. Performance Metrics

The key performance metrics considered in this study are

true positive rate (𝑇𝑃𝑅 or recall), false positive rate (𝐹𝑃𝑅 or

Type I error), precision and accuracy, defined as:

 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
= (1 +

𝐹𝑁

𝑇𝑃
)

−1

 (1)

 𝐹𝑃𝑅 =
𝐹𝑃

𝑁
= (1 +

𝑇𝑁

𝐹𝑃
)

−1

 (2)

 precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
= (1 +

𝐹𝑃

𝑇𝑃
)

−1

 (3)

 accuracy =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
= (1 +

𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁
)

−1

, (4)

where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 and 𝐹𝑁 are the number of true/false

positives and true/false negatives respectively and 𝑃 and 𝑁

are the total number of positive and negative classes

respectively. These four performance metrics are standard

primary metrics for binary classifiers as most other non-

global secondary metrics can be inferred from a combination

of these. For example, true negative rate (𝑇𝑁𝑅) and false

negative rate (𝐹𝑁𝑅 or Type II error) are just the complement

of 𝐹𝑃𝑅 and 𝑇𝑃𝑅 respectively. Furthermore, if all four of

these metrics can be shown to be insensitive to the effect of

reweighting the minority class, then most secondary metrics

are expected to be insensitive too.

This study also examines the area under the curve (AUC)

of the Receiver Operating Characteristic (ROC) and

Precision-Recall (PR) curves. PR-AUC gives the average

precision over the recall and ROC-AUC gives the probability

that the classifier will rank a randomly chosen positive

instance above a randomly chosen negative instance. Larger

values indicate better classifiers.

B. XGBoost

XGBoost consists of an ensemble of learners (decision

trees in this case), taking the form:

 �̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

, 𝑓𝑘 ∈ ℱ (5)

where 𝐾 is the number of learners (in this case, trees), 𝑓
𝑘
(𝑥𝑖)

is the output (or score) of the 𝑘𝑡ℎ
 learner, and ℱ is the

functional space of 𝑓
𝑘
.

Unlike other ensemble decision tree models such as

random forests, XGBoost is based on the gradient boosting

algorithm, introduced by [20]. Therefore, each tree is trained

and added sequentially as a function of the dataset and the

output of the previous trees. The output of the model at step

𝑡 is thus given by:

 �̂�𝑖
(𝑡)

= �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖). (6)

This leads to the following form of the objective function

to be optimized at step 𝑡:

 𝑜𝑏𝑗(𝑡) = ∑ 𝑙 (𝑦
𝑖
, �̂�

𝑖

(𝑡)
+ 𝑓

𝑡
(𝑥𝑖))

𝑛

𝑖=1

+ Ω(𝑓
𝑡
) + 𝑐𝑜𝑛𝑠𝑡, (7)

where 𝑛 is the number of data points, 𝑙 is a customizable loss

function and Ω is a regularization term. A Taylor expansion

of the loss function then leads to the familiar XGBoost

objective function. For a detailed discussion, see [21].

To understand the impact on model performance of

reweighting the minority class of an imbalanced dataset, five

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

144

XGBoost models are trained. Each model is trained

separately on a dataset with a different reweighting factor on

the minority class. All five models are then scored on the

same (unweighted) validation set which reflects the dataset

on which the model will be used.

These five models span 100X, 10X, 1X (unweighted),

0.1X and 0.01X weightings on the minority class. Since

reweighting the minority class by 10X, for instance, is

equivalent to decreasing the ratio of the majority-to-minority

class by the same factor2, these five choices of weightings

correspond to different majority-to-minority class ratios.

Since the amount of reweighting straddles four orders of

magnitude (0.01X to 100X), a comparison of these models

offers insight into the impact of reweighting on model

performance for a wide range of weights.

Hyperparameters are held fixed across the five models. The

choice of XGBoost hyperparameters used in this study are

stated in Table I. The default hyperparameter values of the

Python package were used for all other hyperaparameters.

TABLE I: XGBOOST HYPERPARAMETERS FOR THE FIVE MODELS

‘num_round’ = 600 ‘max_depth’ = 3

‘objective’=‘binary:logistic’ ‘gamma’ = 1

‘colsample_bytree’ = 0.8 ‘alpha’ = 1

‘subsample’ = 0.8 ‘eta’ = 0.1

C. Dataset

The dataset used in our study consists of 160 explanatory

variables and a target binary variable for fraud. The training

and validation sets consist of 1.8M and 0.8M observations

respectively. The dataset represents a type of credit card fraud

whose characteristics are left vague to maintain

confidentiality. But importantly, it is a highly imbalanced

dataset with a positive class ratio of around 2.7%. This

corresponds to a non-fraud : fraud ratio of approximately

36.5:1 and so the four reweighting factors of 100X, 10X,

0.1X and 0.01X correspond to a non-fraud to fraud ratio of

approximately 0.365:1, 3.65:1, 365:1, and 3650:1

respectively.

IV. EXPERIMENTAL RESULTS

A. Classifying Predictions by Probability Cutoff

We begin by investigating the effect of reweighting the

minority class on the four metrics as a function of probability

cutoff, also known as classification threshold. Classification

threshold here is defined as the probability value above which

an observation is classified as a member of the positive

(minority) class. For example, a classification threshold of 0.6

means that only those observations with a model probability

of 0.6 or higher are assigned a positive class prediction. As

this classification threshold increases, a higher probability is

required for any observation to be assigned a positive class

and hence the number of positive class predictions declines.

This is demonstrated in Fig. 1.

Fig. 1 shows that upweighting the minority class

monotonically increases both TPR (recall) and FPR as a

function of classification threshold. This behavior is expected

2 https://github.com/dmlc/xgboost/issues/144

because upweighting the minority class effectively introduces

a positive bias in the classifier, making it more likely that both

negative and positive cases are classified as positive. This

increases both the true and false positive rates.

Fig. 1. Comparison of primary performance metrics of five (biased) models

at varying classification thresholds (probability cutoffs).

Further, although both the true and false positive rates

increase, Fig. 1 also shows that minority class upweighting at

a given classification threshold causes a larger fractional

increase in the false positive rate than the true positive rate.

Combining (1) and (2) gives:

𝐹𝑃

𝑇𝑃
= 𝛼

𝐹𝑃𝑅

𝑇𝑃𝑅
 (8)

where 𝛼 > 0 is the class imbalance, defined as the ratio of

negative to positive observations (or 36.5 in the case of 1X

weighting). Therefore minority class upweighting increases

the 𝐹𝑃𝑅/𝑇𝑃𝑅 ratio, and hence also the 𝐹𝑃/𝑇𝑃 ratio, which

from (3) leads to the observed decrease in the precision of the

classifier at a given classification threshold.

Finally, although introducing this positive bias to the

model increases the absolute number of predicted positives,

it decreases the absolute number of predicted negatives by an

even larger amount because the high degree of class

imbalance within the dataset means that there are far more

negative than positive cases. Therefore from (4) it is evident

that the decrease in 𝑇𝑃 + 𝑇𝑁 leads to a drop in accuracy

when the minority class is upweighted. This is demonstrated

in Table II.

TABLE II: KEY PERFORMANCE METRICS AT A CLASSIFICATION

THRESHOLD OF 0.6 FOR THE 0.01X, 1X AND 100X MODELS

Performance metric 0.01X model 1X model 100X model

TPR 26.3% 66.4% 94.0%

FPR 0.0% 0.2% 6.2%

Precision 99.6% 90.6% 29.1%

Accuracy 98.0% 98.9% 93.8%

Therefore at a given classification threshold, the positive

bias introduced by upweighting the minority class causes a

monotonic increase in TPR and FPR while generally

decreasing the precision and accuracy.

However, an “apples-to-apples” comparison between the

five models should first correct for the varying degrees of

model bias that is artificially introduced by the different

upweighting factors. A common way to correct for this bias

(as in [22]) is to scale the minority class odds by the amount

of reweighting applied:

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

145

 𝑝 =
𝑝′

𝑝′ + (1 − 𝑝′) ∗ 𝛽
 (9)

where 𝑝 is the unbiased (corrected) probability, 𝑝′ is the

biased (uncorrected) probability and 𝛽 is the reweighting

factor applied to the minority class. Under this transformation,

the corrected probabilities lead to the performance results

shown in Fig. 2.

Key performance metrics vs classification threshold

Fig. 2. Comparison of primary performance metrics of five de-biased

models at varying classification thresholds (probability cutoffs).

Therefore once the bias has been corrected, neither

upweighting nor downweighting the minority class has

substantial impact on performance metrics when

classification threshold is held fixed.

B. Classifying Predictions by Percentile Cutoff

Many use cases require a fixed target number of predicted

positives. This is done by selecting the observations with the

largest probabilities. In the case of fraud, each positive case

usually needs to be manually reviewed and this target number

is set by business based on available resources and funding

constraints. Therefore, in such instances it is more relevant to

investigate the relationship between the key performance

metrics and the reweighting factor while fixing the percentile

cutoff rather than the probability cutoff.

Fig. 3. At a fixed percentile cutoff, upweighting the minority class has

negligible impact on TPR, FPR, precision and accuracy of the classifier.

Unlike probability cutoff, percentile cutoff is linearly

proportional to the total number of negative predictions. For

example, a percentile cutoff of 90% means that the classifier

assigns a positive prediction to the top 10% highest

probability cases and assigns a negative prediction to the rest.

As percentile cutoff increases, fewer observations get

classified as positive. Fig. 3 shows the four performance

metrics as a function of the percentile cutoff.

In contrast to Fig. 1 which shows that the performance

metrics change monotonically with increasing upweighting

of the minority class when bias is uncorrected, Fig. 3 shows

that when the percentile cutoff is fixed, the four performance

metrics are largely insensitive to the minority reweighting

factor. Note that this insensitivity persists even after

correcting for bias because the monotonicity of the bias-

correction transformation (9) maintains the same rank order

of the probabilities.

It is also instructive to examine the area under the curve

(AUC) of the Receiver Operating Characteristic (ROC)

curves and Precision-Recall (PR) curves. Given the relative

insensitivity of the four performance metrics to the minority

reweighting factor, the AUCs are expected to not change

substantially with changing reweighting factors. This is

confirmed in Fig. 4. The difference in AUC performance

between the five models is less than 2%.

Fig. 4. ROC curve and PR curve of the five models with different minority

class reweighting factors.

As a final comparison, we examine the rank order

correlation between the five classifiers, based on the five

separate weightings used. The rank order correlation provides

a measure of the correlation between each classifier's

rankings of fraud likelihood for all observations. Fig. 5 shows

that, as expected, the correlation decreases monotonically as

the difference in reweighting factors between two classifiers

increases.

However the rank correlation is very high (approximately

0.9) even for models with reweighting factors that differ by

four orders of magnitude (i.e. 0.01X and 100X). This high

rank correlation implies that mostly the same observations are

being classified as positive in the two models, which

effectively leads to very similar model performance for

different classifiers when the percentile cutoff is held fixed.

Since the XGBoost models have a sufficient number of

estimators whilst being sufficiently well-regularized, all five

models are adequately capturing the varying degrees of

minority class frequency within the data. This leads to the

high rank correlation between all five models.

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

146

As before, note that reweighting is not introducing any new

information to the system. Also, the de-biasing formula (9)

monotonically transforms the predicted probability of an

observation being positive without changing the rank

ordering of the observations. Therefore these results

generalize to cases where the model biases introduced by

reweighting have not been corrected.

Fig. 5. Although the rank correlation between classifiers decreases

monotonically as the difference in weightings between the classifiers

increases, the correlations remain very high which leads to very similar

model performance at a fixed percentile cutoff.

V. CONCLUSION

XGBoost is both flexible and well-regularized. This allows

for better treatment of the bias-variance tradeoff. Therefore

an XGBoost model with optimized hyperparameters to

control for both bias and variance is well-suited to handling

highly imbalanced datasets. As such, reweighting the

minority class has little impact on model performance.

Specifically, we find that:

1. At a fixed probability cutoff (classification threshold),

increasing the weight of the minority class introduces a

bias in the classifier which causes the TPR (recall) and

FPR to generally increase and precision and accuracy to

decrease. However when this bias is corrected,

reweighting has little impact on key performance metrics.

2. At a fixed percentile cutoff, the effect on key

performance metrics of reweighting the minority class is

again negligible. This also includes ROC-AUC and PR-

AUC. Given cost constraints, percentile cutoffs are more

relevant than classification thresholds from a business

perspective. Therefore reweighting a training set with the

aim of improving classifier performance is unlikely to

offer any performance benefit to a business.

3. As the difference in the minority class reweighting factor

between two models increases, their rank order

correlation declines monotonically, though the decline is

marginal.

4. To establish the generalizability of the above conclusions,

the same analysis was separately reproduced on a

different fraud dataset with an even more imbalanced

class ratio of 0.8% using a different (random) choice of

hyperparameters.

5. Since upweighting an observation is formally equivalent

to upsampling it, while downweighting an observation is

approximately equivalent to downsampling it (modulo

the slight information loss caused by discarding

observations), the conclusions from this study may be

generalized to other XGBoost models where the minority

class is upsampled or the majority class is moderately

downsampled.

XGBoost is one of several gradient boosting algorithms.

Other such algorithms include LightGBM [23], CatBoost [24]

and AdaBoost [25]. These algorithms work in a way similar

to XGBoost but with key differences. For example,

LightGBM uses Gradient-Based One-Sided Sampling

(GOSS) to find the optimum split points; CatBoost (short for

Categorical Boosting) specializes in categorical features; and

Adaboost (short for Adaptive Boosting) modifies the sample

distribution by weighting the data points for each iteration.

Since these techniques, like XGBoost, use boosting to focus

the subsequent weak learners disproportionately on

misclassified observations, their performance is likely

similarly insensitive to minority class reweighting. Future

scope of the current work involves quantifying this

performance impact by performing a similar analysis on these

gradient boosting-based algorithms.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

A. Allawala, A. Ramteke and P. Wadhwa formulated the

study. A. Allawala built the XGBoost classifiers and

conducted the analysis. All authors wrote the paper and have

approved the final version.

REFERENCES

[1] M. Rory and E. Frank, “Accelerating the XGBoost algorithm using

GPU computing,” PeerJ Computer Science, vol. 3, p. e127, 2017.

[2] Bhati, B. Singh, G. Chugh, A.‐T. Fadi, and N. S. Bhati, “An improved

ensemble based intrusion detection technique using XGBoost,”

Transactions on Emerging Telecommunications Technologies, p.

e4076, 2020.

[3] Y.-C. Chang, K.-H. Chang, and G.-J. Wu, “Application of eXtreme

gradient boosting trees in the construction of credit risk assessment

models for financial institutions,” Applied Soft Computing, vol. 73, pp.

914-920, 2018.

[4] D. Komura, S. Ishikawa, S.-P. Cheng et al., “A benchmark for

comparing precision medicine methods in thyroid cancer diagnosis

using tissue microarrays,” Bioinformatics, vol. 34, no. 10, 2018, pp.

1767-1773.

[5] Z. Xuan, T. J. Li, J. Wang, J. Li, L. Chen, and C. N. Liu, “Identification

of cancer-related long non-coding RNAs using XGBoost with high

accuracy,” Frontiers in Genetics, vol. 10, p. 735, 2019.

[6] D. P. Yu, Z. D. Liu, C. Y. Su et al., “Copy number variation in plasma

as a tool for lung cancer prediction using Extreme Gradient Boosting

(XGBoost) classifier,” Thoracic Cancer, vol. 11, no. 1, pp. 95-102,
2020.

[7] B. Siddharth, Y. Sinha, and L. Goel, “Lung cancer detection: A deep

learning approach,” Soft Computing for Problem Solving, Springer,

Singapore, pp. 699-705, 2019.

[8] X. Y. Deng, Y. Luo, and C. Wang, “Analysis of risk factors for cervical

cancer based on machine learning methods,” in Proc. 2018 5th IEEE

International Conference on Cloud Computing and Intelligence

Systems (CCIS), 2018, pp. 631-635.

[9] L. Torlay, P.-B. Marcela, E. Thomas, and M. Baciu, “Machine

learning–XGBoost analysis of language networks to classify patients

with epilepsy,” Brain Informatics, vol. 4, no. 3, pp. 159-169, 2017.

[10] J.Yu, G. X. Tong, H. N. Yin, and N. X. Xiong, “A pedestrian detection

method based on genetic algorithm for optimize XGBoost training

parameters,” IEEE Access, vol. 7, pp. 118310-118321, 2019.

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

147

[11] N. Didrik, “Tree boosting with xgboost-why does xgboost win "every"

machine learning competition?” Master's thesis, NTNU, 2016.

[12] A. Omar and K. Belkhayat, “XGBoost and LGBM for Porto Seguro’s

Kaggle challenge: A comparison,” Preprint Semester Project, 2018.

[13] B. Sweta, P. K. R. Maddikunta, R. Kaluri, S. Singh, T. R. Gadekallu,

M. Alazab, and U. Tariq, “A novel PCA-firefly based XGBoost

classification model for intrusion detection in networks using GPU,”

Electronics, vol. 9, no. 2, p. 219, 2020.

[14] S. Gautam, N. Deepa, B. Prabadevi, and M. P. K. Reddy, “An ensemble

model for intrusion detection in the Internet of Softwarized Things,” in

Adjunct Proc. the 2021 International Conference on Distributed

Computing and Networking, 2021, pp. 25-30.

[15] Z. X. Zhao, H. Peng, C. W. Lan, Y. Zheng, L. Fang, and J. Y. Li,

“Imbalance learning for the prediction of N 6-Methylation sites in

mRNAs,” BMC Genomics, vol. 19, no. 1, pp. 1-10, 2018.

[16] P. C. Victoria and D. P. Prabha, “Influence of optimizing XGBoost to

handle Class Imbalance in credit card fraud detection,” in Proc. 2020

Third International Conference on Smart Systems and Inventive

Technology (ICSSIT), 2020, pp. 1309-1315.

[17] C. Z. Meng, L. Zhou, and B. S. Liu, “A case study in credit fraud

detection with SMOTE and XGBoost,” Journal of Physics: Conference

Series, vol. 1601, no. 5, p. 052016, IOP Publishing, 2020.

[18] Majhi, S. Kumar, S. Bhatachharya, R. Pradhan, and S. Biswal, “Fuzzy

clustering using salp swarm algorithm for automobile insurance fraud

detection,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 3, pp.

2333-2344, 2019.

[19] S. Amit, R. K. Ranjan, and A. Tiwari, “Credit card fraud detection

under extreme imbalanced data: A comparative study of data-level

algorithms,” Journal of Experimental & Theoretical Artificial

Intelligence, pp. 1-28, 2021.

[20] J. H. Friedman, “Greedy function approximation: A gradient boosting

machine,” Annals of Statistics, pp. 1189-1232, 2001.

[21] T. Q. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in Proc. the 22nd ACM sigkdd international Conference on Knowledge

Discovery and Data Mining, 2016, pp. 785-794.

[22] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi,,

“Calibrating probability with undersampling for unbalanced

classification,” in Proc. 2015 IEEE Symposium Series on

Computational Intelligence, IEEE, December 2015, pp. 159-166.

[23] G. L. Ke, Q. Meng, T. Finley, T. F. Wang, W. Chen, W. D. Ma, Q. W.

Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting

decision tree,” Advances in Neural Information Processing Systems,

vol. 30, pp. 3146-3154, 2017.

[24] Dorogush, A. Veronika, V. Ershov, and A. Gulin, “CatBoost: Gradient

boosting with categorical features support,” arXiv preprint arXiv:

1810.11363, 2018.

[25] F. Yoav, R. Schapire, and N. Abe, “A short introduction to boosting,”

Journal-Japanese Society for Artificial Intelligence, vol. 14, pp. 771-

780, 1999.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Altan Allawala holds a PhD and MSc in theoretical

physics from Brown University, USA and a BSc in

physics from University of Melbourne, Australia.

He is the vice president at J.P.Morgan’s MRG

Machine Learning Center of Excellence where he is

the project leader of a proprietary financial machine

learning Python-based library. He also conducts

fundamental research into machine learning topics

relevant to the industry and hosts firmwide machine

learning training.

Anand Ramteke holds a finance MBA from the

Indian Institute of Management, Bangalore and a

bachelor’s degree in metallurgical engineering from

the Indian Institute of Technology, Chennai.

He is the executive director at J.P.Morgan’s

model review group and is responsible for reviewing

machine learning (ML) models and related research.

Anand spent 14 years building / reviewing ML

models across industries and previously led ML

development teams at American Express and AIG. Anand also holds a

patent for ML solution built at Wolters Kluwer.

Pavan Wadhwa holds a PhD and MBA in finance

from the University of Texas at Austin and a

bachelor’s degree in electrical engineering from the

Indian Institute of Technology, Kanpur.

He is the managing director in the model risk

group at J.P.Morgan where he is responsible for

reviewing models related to deposits, fee/revenue

and anti-money laundering. Additionally, he has

established a Center of Excellence to validate

Machine Learning models.

Pavan spent 15 years on various trading desks of J.P.Morgan in NY and

London generating thematic and Relative Value trade ideas for traders and

clients, eventually running global rates strategy. Prior to his current role,

he was head of US interest rate strategy at Blackrock.

International Journal of Machine Learning and Computing, Vol. 12, No. 4, July 2022

148

https://creativecommons.org/licenses/by/4.0/

