
 
 

  
Abstract—Performance issues and outages in IT systems have 

significant impact on business. Traditional methods for 
identifying these issues based on rules and simple statistics have 
become ineffective due to the complexity of the underlying 
systems, the volume and variety of performance metrics 
collected and the desire to correlate unusual application logging 
to help diagnosis. This paper examines the problem of providing 
accurate ranking of disjoint time periods in raw IT system 
monitoring data by their anomalousness. Given this ranking a 
decision method can be used to identify certain periods as 
anomalous with the aim of reducing the various performance 
metrics and application log messages to a manageable number 
of timely and actionable reports about unusual system 
behaviour. In order to be actionable, any such report should 
aim to provide the minimum context necessary to understand 
the behaviour it describes. 

In this paper, we argue that this problem is well suited to 
analysis with a statistical model of the system state and further 
that Bayesian methods are particularly well suited to the 
formulation of this model. To do this we analyse performance 
data gathered for a real internet banking system. These data 
highlight some of the challenges for accurately modelling the 
system state; in brief, very high dimensionality, high overall 
data rates, seasonality and variability in the data rates, 
seasonality in the data values, transaction data, mixed data 
types (continuous data, integer data, lattice data), bounded data, 
lags between the onset of anomalous behaviour in different 
performance metrics and non-Gaussian distributions. In order 
to be successful, subject to the criteria defined above, any 
approach must be flexible enough to handle all these features of 
the data. 

Finally, we present the results of applying robust methods to 
analyse these data, which were effectively used to pre-empt and 
diagnose system issues. 

 
Index Terms—Anomaly detection, APM.  
 

I. INTRODUCTION 
Businesses today have become dependent on increasingly 

large and complex IT systems. Understanding and managing 
these systems relies on instrumenting their behaviour and 
understanding the resulting monitoring data. Traditionally, 
static thresholds and simple statistical methods, such as 
thresholds on number of standard deviations of an 
observation, have been used to proactively alert IT staff of 
anomalous system behaviour. With the increasing scale and 
complexity of these systems and improvements in 
application performance management (APM) monitoring, the 
coverage and volume of machine generated data has 
increased significantly, exposing deficiencies in these 
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traditional methods for accurately identifying anomalies with 
low false alarm rate [1], [2]. 

Over recent years, the area of outlier detection has received 
a lot of research interest, and a large number of different 
algorithms have been presented. However, many approaches 
can be classified as variants on a similar theme. In particular, 
most approaches either use some statistical model of the data 
set, or look at distances between data points. 

The statistical approaches include parametric and 
non-parametric distribution fitting, and consider various tests 
for outliers based on the distribution(s) they fit. A good 
introduction to statistical outlier detection is Hawkins [3]. For 
more recent work in this area, see Caussinus and Roiz [4] and 
Liu et al. [5]. We would also tentatively include PCA and 
particularly robust PCA approaches in this category, since 
these are statistical techniques that can give rise to natural 
definitions of outliers; although really they are dimension 
reduction techniques and aren’t specifically formulated with 
outlier detection in mind. For more information on these 
techniques see, for example, Jackson and Chen [6].  

The distance based approaches look at distance between 
neighbouring points or local density at a point in some metric 
space. These approaches typically consider functions based 
on the set of the k nearest neighbours, and classify outliers as 
(relatively) far from their neighbours or in regions of low 
density. For approaches of this sort, see Knorr and Ng [7], 
Breunig et al. [8] and Fan et al. [9]. It is important to note that 
all these approaches to outlier detection assume the data can 
be embedded in a metric space. 

The traditional statistical definition of outliers is framed in 
the language of hypothesis testing. For example, Hawkins’ 
definition is “an outlier is an observation which deviates so 
much from the other observations as to arouse suspicions that 
it was generated by a different mechanism”. Here, the normal 
mechanism, which describes most of the observations, would 
be the null hypothesis. This definition is the basis for the 

the mean of the data. In the context of APM, and indeed many 
other applications, for example, network intrusion, fraud 
detection and so on, the definition of outlier should also 
capture something about the observation rarity. For example, 
consider a collection of time stamped log messages. Often, of 
primary interest are identifying time periods where an 
unexpectedly high number of rare log messages occur, where 
rare would be those messages with the lowest arrival rate. In 
this case, we are not interested in rejecting some null 
hypothesis concerning the mechanism that generates a 
particular observation, only that the observation is highly 
unlikely. Note also that distance based definitions of outliers 
are not well suited to identifying such periods as outliers. 
Many of these are local measures, in the sense that an 
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identifying outliers for APM use cases, and in fact for many 
other applications. In particular, outliers would correspond to 
small values of this statistic. Furthermore, this measure is a 
strict weak ordering of the events to be classified as outliers 
(or normal by analogy), and so can be used to order all events 
by their deviance (in the sense of Hawkins’ the definition of 
an outlier) or anomalousness. This approach also has the 
advantage that it doesn’t need to embed all the data in a 
metric space, so provides a consistent measure of anomalies 
in metric data and categorical data. It also naturally captures 
the fact that we’d like rare observations to be treated as 
anomalous. Given this statistic, the problem of outlier 
detection reduces to the problem of fitting a distribution to 
the data set on which to perform outlier detection. 

For APM data, we are always interested in fitting this 
model to a data stream. The data volumes are far too high to 
consider analysing the entire corpus of data in one go, and, in 
fact, much data are only kept on disk for a relatively short 
period. Also, people want to be alerted to changes in their 
system (as near as possible to) when they occur. As a result of 
these constraints, we use a Bayesian formulation for all our 

system models, since they are intrinsically online. They also 
have several other characteristics, which make them 
particularly well suited to analysis of an evolving system: it is 
easy to implement an intuitive aging mechanism based on 
relaxing the prior distributions to something less informative, 
and there is a natural formulation for the problems of i) 
choosing between different models for the data based on their 
observed likelihoods, see, for example, Bishop [11], and ii) 
incorporating user feedback. 

The area of parametric and non-parametric distribution 
fitting is large, and we do not attempt to give a survey of the 
methods we use; rather, the rest of the paper is concerned 
with a discussion of those characteristics of a canonical APM 
data set which we have found it is most important to capture 
in order to get good results in practice. In this context, good 
means a high proportion of user validated incidents detected 
with a low rate of false alarms. We look at a data set 
generated by monitoring an internet banking system over a 
three day period. This is around 12 GB and comprises around 
33500 distinct metric time series. We show that parametric 
families of statistical distributions provide an extremely 
compact representation of (portions of) this data set, and, 
provided the overall approach tests the goodness of fit of 
these distributions and is able to propose non-parametric 
models where necessary, the traditional objection of rigidity 
does not apply. Finally, we note that these data are very high 
dimensional, as is the majority of APM data: people gather 
many different performance measures about their system. 
Anomaly detection in high dimensional data poses some 
particular problems. We discuss these in more detail in 
Section III. 

 

II. A DEFINITION OF ANOMALOUSNESS 
For all the models we will need to deal with we can safely 

assume that a distribution function exists. Specifically, our 
system is defined as some random variable from a probability 
space  to some measure space  and there 

exists a measurable function , where  denotes 
the non-negative real line with Borel algebra, which recovers 
the probabilities of the measurable sets of X . We define the 
generalized p-value, or q-value, of an observation x ∈ X  as: 

q(x) = P y : f (y) ≤ f (x){ }( )                     (1) 

This is clearly well defined, since the closed interval 
[0, f (x)]  is Borel measurable and so its preimage is  
measurable. Since q(x) is a probability it takes values in the 
interval [0,1] . Any subset of [0,1]  has the usual strict total 
ordering of the reals, and so we can define a strict weak 
ordering of observations by their anomalousness, i.e. x >a y  
if and only if q(x) < q(y) . In particular, anomalousness 
could be defined as some monotonic decreasing function of 
the q-value, for example − log(q(x)). 

We will look at this definition on some examples to 
understand it better. Suppose our model for the system is a 

then for a given observation x the anomalousness is defined 
as: 

observation is compared to its neighbours. For example, in [8] 

if a point is near some other (rare) observations it will 

generally not have a high local outlier factor.

If it were possible to make a small set of hypotheses 

concerning the mechanisms which give rise to the data, and 

further that some of these mechanisms could be labelled as 

normal, then either the Neyman-Pearson framework, or 

Bayesian statistics, give natural classifiers of observations as 

outliers, or probabilities of observations being outliers. 

However, for APM these mechanisms might be expected to 

be isomorphic to the number of states of the system to be 

modelled, which, even for a moderately complex system, 

would make this approach intractable.

Where no alternative hypothesis is available, the p-value of 

a test statistic can be used as the basis for rejecting the null 

hypothesis, or in our case identifying a point as an outlier. As 

capture something useful about the rarity of an observation. 

Furthermore, p-values provide a natural ranking of all the 

observations by their unusualness. Given this ranking, a 

number of approaches are available for classifying 

observations as outliers: natural breaks, quantiles and so on. 

Note, however, in its traditional formulation the p-value 

identifies extreme values. These are strictly a subset of what 

one might consider an outlier, in that they are points that lie 

outside some convex hull of most of mass of the distribution. 

(Note also that the test always applies a to single value, so 

one has to construct some suitable statistic for multivariate 

data, for example the Mahalanobis distance from the sample 

mean.) To explain the distinction, if a mixture of two 

univariate Gaussians, that are well separated, describes some 

one-dimensional data, we expect some points between the 

modes of these two distributions to occur with low 

probability. We would typically want to classify these points 

as outliers, although they are certainly not extreme values.

In this paper, we argue that a natural extension of the 

p-value of an observation provides a good measure for 

a method for rejecting the null hypothesis p-value tests are 

open to significant criticisms, see Schervish [10]. However, 

from the point of view of outlier detection the p-value does 

univariate normal distribution with mean m and variance ů, 
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q(x) = P y ≤ μ− | x − μ |{ }( ) + P y ≥ μ+ | x − μ |{ }( )  

= 1 − erf
| x − μ |

2σ 2

⎛
⎝⎜

⎞
⎠⎟

                                               (2) 

This is just the standard two-tail p-value for a normal 
distribution. Note that for a non-symmetric single mode 
one-dimensional random variable this is somewhat different 
to the standard p-value, since equal values for the cumulative 
density function don’t occur at equal values for the density 
function. 

q(x) = P x ≤ a{ }( ) + P b ≤ x ≤ c{ }( ) + P x ≥ d{ }( )  
= F(a) + F(c) − F(b) + 1 − F(d)                                  (3) 

Here, F(x)  is the cumulative density function 
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and w1 + w2 = 1. Finally, for a discrete random variable with 

mass function f (xi ) = fi , where xi  takes values in some 
fixed number of nominal categories, then 

q(x j ) = fi
fi ≤ f j

∑                                       (5) 

qn (x) =
y ∈Yn : f (y) ≤ f (x){ }

n
                     (6) 

Here, we’ve used A  to denote the cardinality of the set A . 

We show that qn (x) a .s .⎯ →⎯ q(x) as n → ∞ . 
Proof: As before, define our system model to be the 

random variable Y  with probability distribution function 
. Let, A(x)  denote the  measureable set 

f −1[z : z ≥ 0, z ≤ f (x)] , and IA( x )  denote the indicator 

function of A(x) . Given a random sample y  of Y  then, by 

definition, IA( x ) (y) = 1  with probability q(x)  and 0 

otherwise. Therefore, IA( x ) (Y ) , which we understand as 

IA( x ) aY , is a Bernoulli random variable with success 

probability p = q(x) . By definition,  

            (7) 

Furthermore, IA(x ) (Y ) ~ B(n, p)
i=1

n∑ , i.e. it is a binomial 

random variable with number of trials n  and probability of 
success p . Noting that B(n, p) a .s .⎯ →⎯ N (np,np(1 − p))  as 
n → ∞  it follows that 

1

n
IA (x ) (Y )

i=1

n

∑ a .s .⎯ →⎯ N q(x),
q(x)(1 − q(x))

n
⎛
⎝

⎞
⎠         (8) 

In particular, it is normally distributed with mean q(x) 
and variance q(x)(1 − q(x)) / n . The variance is maximized 

when q(x) = 1 / 2, and so qn (x) a .s .⎯ →⎯ q(x) as n → ∞  for 
all x  and we are done.  

In fact, the result we’ve proved is stronger: it tells us the 
limiting distribution of the error. It is interesting to note that 
this distribution only depends on q(x) and n , and not on the 
probability distribution function at all. Note, also, that the 
normal approximation to the binomial is good even for 
relatively small n . Fig. 1 indicates the convergence of the 

the observation density values f (x), for mixture of three 
univariate Gaussians. Specifically, this shows the variation in 
the curve qn = qn ( f (x))  for 100 different random trials for 
the case n = 100, and the red line shows the exact value of 
the curve, i.e. limn→∞ qn ( f (x)) . Recall that the result we 
proved relates to the expected spread in the Y-values of the 
curves, and the spread in their X-values is scaled by the 
inverse gradient. 

 

 
probability density for mixture of three Gaussians. 

 

III. MULTIVARIATE ANOMALY DETECTION 
This section takes an introductory look at some of the 

additional complications for outlier detection in a high 
number of dimensions. Note that for the canonical set 
presented in this paper the dimensionality is around 33500. 
For any general outlier detection algorithm this would 
represent a very significant challenge. However, the 
requirements are somewhat different for typical APM use 
cases, and they mean that one can usually get away with 
considering marginal distributions. We return to this after 
some general discussion. 

For a mixture of two univariate Gaussians, points between 

the modes with low probability density would have high 

anomalousness, i.e. theyôd have low q-values. The sublevel 

set comprises one, two or three intervals. In the problem case 

for a p-value, discussed in the Section I, the sublevel set is 

three intervals. Then denoting the level set {a,b,c,d} , we 

have that

Note that in all these, equivalence classes of the strict weak 

ordering a> are given by the sets for which the probability 

density function, or probability mass function, are equal.

Fig. 1. -value verses Q

scheme given by (6), and the exact q-value as a function of 

For many specific models there exist closed form solutions 

or efficient numerical methods to compute the q-value, or at

least good upper and lower bounds. We note also that for any 

generative model, then, given n independent samples from 

the model Y
n

= {y}, the q-values can always be estimated 

from
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One of the key complications for multivariate outlier 
detection is that outliers are typically only observable in some 
directions. This happens whenever the data are clustered near 
some much lower dimensional manifold, and can easily be 
illustrated with a bivariate Gaussian distribution. Fig. 2 
shows the case that the principal component is parallel to the 
line y = −x  and the variance in this direction is much larger 
than the orthogonal one. In this case, the outlier at the red 
cross is not visible when the data are projected on to the lines 
x = 0 or y = 0, but is clear when the data are projected on to 
the line y = x . 

 
Fig. 2. Outlier from bivariate Gaussian that is not visible in the X- and Y- 

marginal distributions. 

The observation that this tends to occur when the variance 
in some low dimensional manifold is much greater than the 
variance in the data away from that manifold has inspired 
approaches which look at projecting data points onto the 
orthogonal complement of the first few principal components. 
If these account for much of the total variation in the data, 
then, heuristically, any set of coordinate axes can be used for 
detecting anomalies on these projected data, or in fact one 
could look at the distance from mean in the orthogonal 
complement, see Huang et al. [12]. 

Finally, we note that in very high dimensional spaces 
distance based approaches suffer because the distance 
between all points is usually very nearly equal (and, in fact, 
tends to infinity). Informally, we note that as the 
dimensionality n increases the proportion of the volume of an 

centred on one of the data points, we expect nearly all other 
points it contains to be very near its surface. Furthermore, we 
expect it to contain another point when its volume V  
satisfies 2 = ρV , where ρ  is the density of points. Even if 
the density varies significantly from one region to another, 
the implied change in radius r  from this relation is small 
because V ∝ rn . Aggarwal et al. studied this effect in detail 
in [13]. 

Returning to the APM use cases, we note that system 
problems are nearly always associated with outliers in one or 
more of the performance metrics people gather, which will 
typically include database query times, dropped packets, 
CPU utilization and so on. Effects of the sort discussed earlier 
could correspond to a relative phase change in two periodic 
signals, and are typically not the only symptoms of some 
significant hardware or software failure. As such, people are 
generally interested in whether any of the metrics they gather 
display significant anomalies in their own right. In this 
context, we can aggregate individual q-values of a collection 
of observations by considering either their order statistics or 
some suitable estimate of the joint probability. 

IV. ANALYSIS OF  CANONICAL APM DATA SET 

A. Basic Characteristics 
The data set we discuss was gathered by the CA APM 

product monitoring three serves of an internet banking site, 
see [14] for more information on these data. Every 
performance metric is reported at 60s intervals, although 
some record transactions and are not necessarily available at 
this granularity. It contains 33,159,939 distinct records and 
33,456 distinct time series. The data cover a period of 72 
hours and so the total data rate is around 500,000 values per 
hour. There are 38 categories of metric; these include 
“responses per interval”, “average response time”, “errors per 
interval”, “stall counts” and “average result processing”. 
Note that various categories are split out by SQL command, 
host and so on, which accounts for the total number of 
distinct time series. 

The period we will analyse contains one confirmed 
significant incident, corresponding to system performance 
degradation. This will be discussed in Section V. 

B. Strong Seasonality 
A significant number of the time series in the data set 

display strong diurnal variation, for example “responses per 
interval”, which dips during the night time for the typical site 
user’s location. In addition, one would also expect different 
weekday and weekend behaviour, although this is not 
captured by the data set. Fig. 3 shows diurnal variation in a 
specific SQL query rate. 

 
Fig. 3. Average responses per hour for a specific SQL query verses time 

after the start of the data set in hours. 

Any model must be capable of describing these 
fluctuations in order to look for anomalies in the residuals. A 
number of approaches are available for this purpose, for 
example ARMA attempts to find a data transform, in terms of 
a lag function, which causes the residuals to be independent 
and identically distributed (usually Gaussian), see Box and 
Jenkins [15]. Alternatively, a suitably flexible interpolating 
function, such as single layer radial basis function network, 
can be used to fit and remove the main trends in the data. We 
note that for the purpose of outlier detection, the accuracy 
with which the model fits any slower trends in the data can 
usually be lower than for prediction.  

C. Integer and Lattice Valued Data 
Many data correspond to counts, for example “responses 

per interval”, “errors per interval”, “stall counts” and so on. 
Counts are obviously integer valued and they are also 
non-negative. These characteristics should be considered 
when fitting a distribution. Particular issues that can arise if 
one tries to model their values by a continuous distribution 
are that scale parameters cannot be reliably estimated, as 
occurs when a long sequence of identical values is received, 

n-ball near its surface increases. For a high dimensional ball 

A
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and the data show lower than expected variation (most of the 
time), as occurs when the probability of a particular integer 
value becomes large. This second effect causes problems for 
both model selection and any aggregation technique that 
looks at the joint probability of a large collection of 
observations. 

Lattice valued data occur when a metric is truncated to 
fixed precision. In this case, it takes values on some 
(non-integer) regular grid. These can be handled by looking 
for the greatest common (rational) divider, by first 
multiplying values by some fixed constant, so that they are 
integer, and then using Euclid’s algorithm. Since even 
floating point numbers are rational, this is only worth 
explicitly handling when the grid spacing is reasonably large, 
certainly much larger than floating point precision! 

D. Low Coefficient of Variation Data 
Data with a very low coefficient of variation, i.e. standard 

deviation divided by mean, can occur when for example 
monitoring memory usage of a program, such as the “GC 
heap bytes” category in the canonical data set. Often memory 
is not returned to the operating system, but kept in pools by a 
program’s memory allocator, so it ratchets up and can remain 
constant for extended periods. Furthermore, if the memory 
usage is measured in bytes then the values will be large, often 
in excess of 1,000,000,000. These data cause numerical 
stability problems for many techniques that try and determine 
distribution scale parameters. 

E. Fat Tailed and Multimodal Distributions 
Fat tailed data are ubiquitous. Many classes of phenomena 

display power law distributions for large values and APM 
data are no exception. In APM data, this behaviour can be 
amplified by the sampling techniques. In particular, 
monitoring tools often sample maximum values in a time 
interval that could include many measurements. This results 
in heavier right tails. 

 
Fig. 4. Count verses “average result processing time” for a specific time 

series and the maximum likelihood log-normal fit. 

 
Fig. 5. Detail of maximum likelihood log-normal fit to tail of count verses 

“average result processing time” for a specific time series. 

Fig. 4 shows the long tail behaviour of one particular 
“average result processing time” time series. In fact, this 
distribution is closely log-normal as can be seen by the 
maximum likelihood fit, which has been superposed. Note 
especially that this accurately fits the counts in the tail, which 
is important for anomaly detection. Fig. 5 shows the tail fit. 

Metrics can have multiple distinct modes when several 
distinct phenomena are modelled by one metric. For example, 
if the response time for a number of different SQL queries 
were grouped into a single metric value then one would 
expect different modes for the different queries. Fig. 6 shows 
some of the distinct modes present in one particular “average 
result processing time” time series (presumably due to 
different result object sizes). 

 
Fig. 6. Count verses “average result processing time” for a specific time 
series, showing some of the distinct modes present in the distribution. 

F.  Different Time Series 
When a system problem occurs then often different time 

series display anomalies at different times. The reasons for 
this are varied and include: low and sporadic data rates, 
which mean that no observations are available for extended 
periods in some time series, and causal relationships which 
introduce a lag, such as a slow memory leak showing up first 
as a spike in process footprint and eventually triggering 
increased response times as the process starts swapping. 

Fig. 7 shows anomalousness behaviour in a mixture of two 
specific “average response time” and three specific 
“concurrent invocations” time series from the canonical set. 
Individual time series values have been normalized so that 
their maximum value in the interval is 100. Note that some of 
these series, especially “s2” and “s5”, contain breaks, when 
no observations are available. For simplicity, the chart value 
is set to zero in this case, although clearly any system model 
must handle missing data points correctly. 

 
Fig. 7. Normalized “average response time” and “concurrent invocations” 

verses time displaying an anomaly in the interval 31 to 35 hours after the 
start of the data set. 

 
All five series display anomalous behaviour during part of 

a four hour period, from 31 to 35 hours after the start of the 

Lags  Anomalies inbetween 
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data set. However, these anomalies do not all overlap in time. 
In particular, looking at Fig. 8, we see that whilst the 
anomalies in time series “s3” and “s4” are well correlated in 
time, series “s1” is also anomalous in the interval 31 to 32 
and the spikes in “s2” and “s5” are relatively short and 
mutually disjoint. 

 
Fig. 8. Detail of the anomalous time period in “average response time” 

and “concurrent invocations” verses time. 

Effects such as this can be handled by doing detection on 
time bucket statistics, such as the minimum, maximum and 
arithmetic mean, for a number of different bucket lengths and 
offsets, or by using dynamic time warping to correlate 
anomalous behavior in time. For details on dynamic time 
warping see Muller [16]. 

 

V. RESULTS 
The large anomaly visible in Fig. 9 manifested itself as 

system performance degradation during the interval 32 to 35 
hours after the start of the data set. In terms of the raw 
anomaly scores, which were obtained by aggregating 

time series are significantly anomalous. These results 
indicated there was an operational issue with a specific 
component of the backend, which resulted in the response 
time of a subsection of the website (6 JSPs) having 
dramatically increased response times. In addition, there was 
a precursor to the main anomaly, at 27 hours after the start of 
the data set, which provided the system administrators with 
early warning of the specific problem before the main failure. 
This was detected in the performance metrics with a 
signal-to-noise ratio of around 65dB; however, this was not 
significant enough to result in user noticeable system 
performance degradation. 

As discussed in Section I, once we have a numerical value 
that allows us to rank all time periods by their anomalousness, 
we can impose some decision logic on top of this ranking to 
generate a set of reports about anomalous time periods. A 
strong requirement for the algorithm to achieve this is that it 
provides reports as near as possible to the onset of anomalous 
behaviour. As such, it can only use the anomaly scores 
received up to an including the time period when it decides to 
generate a report. Our algorithm for this uses online estimates 
of historic aggregate q-value quantiles, based on the data 
structure proposed in Shrivastava et al. [17]. Operationally, 
these reports are presented to the user as alert notifications 
that inform them in real-time of changes in behaviour of the 
system. These alerts are generated from a score that is 

normalized to the range 0 to 100. Fig. 9 show the normalized 
scores which were generated on the data set, together with 
our four alert thresholds of increasing severity at 10, 25, 50 
and 75. 

 
Fig. 9. Normalized anomaly score, based on historic raw anomaly score 

quantiles, and four alert levels (warning, minor, major, critical). 

The effectiveness of this approach was compared to using 
static thresholds and dynamic thresholds, based on an outlier 
being 2.5 standard deviations from the rolling mean. In the 
case of static thresholds, the administrators set the thresholds 
at such a high watermark, to avoid a stream of false positive 
alerts, that only a subset of the symptomatic series were 
identified during the system failure. In the case of dynamic 
thresholds, the inaccuracies in modelling all series using a 
Gaussian distribution resulted in a stream of between 1000 
and 6000 alerts an hour, with the system degradation alerts 
being essentially indistinguishable from the noise. 

 

  

 
 

 

 
 

 

 

individual time series q-values, this corresponded to a 

signal-to-noise ratio of around 330dB. If the time series are 

ordered by their q-values at that time, then 560 of the 33456 

VI. CONCLUSION

In this paper, we have given a probabilistic definition of 

anomalousness inspired by the p-value concept and show 

how this can be calculated for various distributions. We also 

present a numerical scheme for calculating the value when a

generating model for the system can be sampled and calculate 

the limiting distribution for the error in this approximation.

Given this definition, anomaly detection reduces to fitting 

distributions to data that describe the system behaviour. We 

discuss those features that must be accurately modelled in 

order to get good anomaly detection on a canonical

application performance management data set.

Finally, we show that the results of combining accurate

system modelling and using our definition of anomalousness, 

picks out a system performance degradation in a real world 

APM data set with very high signal-to-noise ratio (330 dB). 

Furthermore, it identifies a small subset of the time series 

(560 out of 33500) that characterise the anomaly and 

provides an intuitive ranking of those time series by their 

anomalousness, which significantly simplifies problem 

identification and diagnosis.

REFERENCES

[1] TRAC Research. (2013) Improving the usability of APM data: 

essential capabilities and benefits. [Online]. Available: 

http://prelert.com/resources.html.

[2] A. Oliveira. (2013). Why static thresholds don't work. [Online]. 

Available: http://www.prelert.com/blog/623.

[3] D. Hawkins, Identification of Outliers, Chapman and Hall, 1980.

[4] H. Caussinus and A. Roiz, ñInteresting projections of multidimensional 
data by means of generalized component analysis,ò in Proc.

Computational Statistics, 1990, pp. 121-126.

[5] H. Liu, S. Shah, and W. Jiang, ñOn-line outlier detection and data 

cleaning,ò Computers and Chemical Engineering, vol. 28, issue 9, pp. 

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

125



 

 

1635-1647, 2004. 

[6] D. A. Jackson and Y. Chen, ñRobust principal component analysis and 
outlier detection with ecological data,ò Environmetrics, vol. 15, issue 2, 

pp. 129-139, 2004. 

[7] E. M. Knorr and R. T. Ng, ñAlgorithms for mining distance-based 

outliers in large datasets,ò in Proc. the 24rd International Conference 

on Very Large Data Bases, 1998. 

[8] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, ñLOF: 
identifying density-based local outliers,ò in Proc. the 2000 ACM 

SIGMOD International Conference on Management of Data, 2000. 

[9] H. Fan, O. Zaïane, A. Foss, and J. Wu, ñA nonparametric outlier 

detection for efficiently discovering top-n outliers from engineering 

data,ò in Proc. Pacific-Asia Conference on Knowledge Discovery and 

Data Mining, Singapore, 2006.  

[10] M. J. Schervish, ñP values: what they are and what they are not,ò The 

American Statistician, vol. 50, no. 3, pp. 203-206, 1996. 

[11] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 

2006. 

[12] L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and N. 

Taft, ñIn-network PCA and anomaly detection,ò presented at the NIPS, 

2006. 

[13] C. C. Aggarwal, A. Hinneburg, and D. Keim, ñOn the surprising 

behavior of distance metrics in high dimensional space,ò presented at 

ICDT Conference, 2001. 

[14] (2013). Application management-CA technologies. [Online]. 

Available: http://www.ca.com/us/application-management.aspx 

[15] G. Box and G. M. Jenkins, Time Series Analysis: Forecasting and 

Control, 3rd ed., Prentice-Hall, 1994. 

[16] M. Muller, Information Retrieval for Music and Motion, Springer, 

2007, ch. 4, pp. 69-84. 

[17] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, ñMedians and 

beyond: new aggregation techniques for sensor networks,ò in Proc. the 

2nd International Conference on Embedded Network Sensor Systems, 

2004, pp. 239-249. 

 

 

Thomas J. Veasey has a M.A. (Hons) in physics 

from the University of Cambridge, UK (graduated in 

2000). He has previously worked on radar track 

extraction and satellite control systems, in the 

electronic design automation industry and on foreign 

exchange derivative pricing. He is currently a senior 

developer at Prelert Ltd where his interests include 

Bayesian statistical modelling, clustering and 

convex optimization. 

 

 

Stephen J. Dodson holds a M.Eng. (Hons) in 

mechanical engineering and a Ph.D. in 

computational methods from Imperial College, 

London (graduated in 1998) alongside a CES from 

École Centrale de Lyon. His academic research 

focused on computation of large scattering 

problems using integral equation time domain 

methods. He has worked for commercial enterprise 

software startup for the past 15 years and is currently a founder and CTO 

at Prelert Ltd. The company is focused on developing innovative 

software packages that apply novel machine learning techniques to big 

data in real-time. 

 

 

 

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

126


