
  

  

Abstract—Supercomputing has been indispensable in the 

unstoppable trend of high-speed computing evolution. This 

work aims at improving its running efficacy by introducing a 

new two-step scheduling approach. Based on the analysis of 

large historical data, we provide an accurate runtime estimation 

scheme using Instance-Based Learning (IBL) in the first step. 

Then a swarm intelligence based scheduling (SIBS) method is 

proposed to optimize the scheduling performance in terms of 

total runtime makespan and fair resource allocation. A method 

comparison on a dataset from the ALPS supercomputer, which 

consists of 804k workload data in 2016, shows that our proposed 

method outperforms the most commonly used strategy – 

Extensible Argonne Scheduling System (EASY). 

 
Index Terms—Supercomputer, scheduling, swarm 

intelligence, instance-based learning, runtime estimation.  

 

I. INTRODUCTION 

With the advancement in technology, many high-speed 

computing techniques have emerged. Applications 

unimaginable in past few years has now become achievable. 

Owing to the development on Internet applications [1] and 

new computing schemes, scenarios such as cloud computing 

[2] and parallel computing [3] have come into play and 

resulted in dramatic improvements in high-speed 

computation [4]-[6]. Consequently, new fields of studies such 

as big data analysis and artificial intelligence have started to 

thrive. Supercomputer, a high-level performance computer, 

consists of tens of thousands of processors that are capable of 

performing billions to trillions of calculations per second and 

achieving massive computing power is, without doubt, the 

indispensable role in the unstoppable trend of high-speed 

computing evolution. Therefore, efficiently improving 

performance on a supercomputer would be without doubt a 

vital issue. Many institutions have started to increasingly add 

computing cores to achieve higher computation performance. 

However, [7] shows that simply expanding the number of 

processing nodes and leveraging technology scaling would 

not be an efficient way to improve the processing power of 
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supercomputers, as power demand would increase 

unsustainably. To improve supercomputer’s running efficacy, 

many researchers have devoted full effort into supercomputer 

scheduling [8]-[11], coming up with various scheduling 

schemes to enhance the overall performance of the 

supercomputer without the need of setting up additional 

hardware. 

Before designing the scheduling scheme, an important 

factor in scheduling performances is the runtime estimation. 

It is an important attribute used by the schedulers in various 

scenarios. Its accuracy is proved to be highly correlated with 

scheduling performances by [12]. Researchers have been 

working thoroughly on this topic [13]-[16], trying to come up 

with different solutions to provide accurate estimates of 

runtime data. It would be important to have good domain 

knowledge and insight with their own runtime data to 

improve the accuracy of estimation. This work applies the 

data offered by the supercomputer, Advanced Large-scale 

Parallel Supercluster (ALPS) in National Center for 

High-Performance Computing (NCHC) in Taiwan.  

As the need for large computation keeps increasing, large 

traffic workload has gradually become a burden for ALPS. 

To handle this issue, this work provides two major 

contributions. First, an accurate runtime estimation scheme 

based on the analysis of a large historical data from ALPS is 

proposed using Instance-Based Learning (IBL) [17]. Second, 

a new scheduling scheme for supercomputers on large traffic 

load using Swarm Intelligence is designed.  

A scheduling scheme is a critical factor to the performance 

of a supercomputer. Many researchers have as well 

concentrated on the design of supercomputer scheduling 

trying to obtain a suitable approach in the optimization of 

various goals. Due to the attractiveness in simplicity, 

effectiveness, and fairness, the most common used strategy in 

supercomputer scheduling is FCFS (First-Come First Served) 

with backfilling, also known as the term EASY (Extensible 

Argonne Scheduling System). Although easy to implement, 

job scheduling on supercomputers, however, can be 

complicated due to diverse demands of system administrators 

and may not be enough to be effectively approached by 

simply applying EASY. In fact, runtime efficiency and 

fairness are usually conflicting goals to be achieved. The 

inefficiency becomes evident especially when the workload 

is large. Therefore, to both consider the runtime efficiency 

and user fairness comprehensively while preserving the 

feature of simple implementation in EASY, a heterogeneous 

non-preemptible scheduling scheme to obtain a real-time 

scheduling on large traffic workload is proposed. This work 
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designs a Swarm Intelligence Based Scheduling (SIBS) 

method to optimize the performance and achieve both 

efficiencies on total runtime makespan and fair resource 

allocation.  

By combining IBL and SIBS, this work designs a new 

two-step approach that performs a runtime prediction scheme 

and conducts a novel scheduling algorithm for efficient 

supercomputing scheduling problem. Both steps require little 

computation efforts compared to classic neural network 

learning and convex optimizations. The rest of the paper is 

organized as follows. In Section II background knowledge on 

IBL and original SIB optimization are provided. Section III 

presents the design of IBL runtime estimation, based on data 

from ALPS, and the modified SIB for resource-constrained 

job scheduling. In Section IV, the simulation setup is 

described and the result of the proposal is evaluated. Finally, 

Section V concludes the paper and outlines the contribution 

of this work. 

 

II. BACKGROUND 

To provide an efficient approach to improve the 

performance of a supercomputer, both runtime estimation, 

and job scheduling should not only be operative but also 

computationally effective. For runtime estimation, global 

parametric learning algorithms, such as neural networks, 

attempt to establish an input-output mapping via a single 

function with a global network view. However, this would 

neglect important properties of data partitions when the input 

is highly correlated to local data, which is often the case for 

runtime estimation. This work found IBL most suitable and 

perform good results of our estimates. For scheduling, classic 

optimization approaches such as nonlinear programming or 

dynamic programming can compute the exact solution and 

have better accuracy but are computationally 

time-consuming when the large-scale problem is considered. 

Therefore, this research designs a metaheuristic approaches 

SIB that gives near-optimal answers but is computationally 

efficient. 

A. Instance-Based Learning 

Runtime prediction of new input data is formed through 

past related experiences in a historical database. Experiences 

consist of several input features and one output result. Every 

input features depict the characteristics of the data while the 

output describes the runtime result corresponding to the 

conditions of these features. New input data consists of only 

input features whereas its runtime prediction is formed based 

on these features. Generally speaking, instead of querying the 

entire experiences in the database to form a prediction, only 

past experiences with high correlated input features are used 

as training sets to provide runtime estimation through 

similarity calculation. This allows an estimate to preserve 

useful local information and filter out unrelated information 

that would degrade the performance of accuracy.  

IBL can be categorized into two major parts: similarity 

calculation and kernel regression. In similarity calculation, a 

distance function is defined as an indicator of similarity 

between two data according to the feature of the attributes. In 

kernel regression, a weighted-distance average of output is 

provided for final runtime prediction. The weights given to 

different runtimes are defined by the kernel function. The 

kernel function determines the weights on a given runtime 

data according to the measured similarity between input and 

historical experiences. 

In summary, the preprocessing procedure of IBL starts with 

the search of the relevant historical data records (past 

experiences) according to the value obtained from the 

similarity metrics like distance function. Then it selects the 

first k important data (data with top k lowest distance values) 

for runtime estimation and filters out the rest. 

1) Distance function 

The distance function for similarity measure is defined as 

1

1

( , )

n f f

f ij ijf

ij n f

f ijf

w d
d d i j

w





=

=

= =



,                         (1) 

where  is the feature,  is its weight,  

1,  if feature  exists in both data 

0,  otherwise

f

ij

f
 =





,              (1-1) 

overlap ( , ),  if nominal

avediff ( , ),  if numerical

ff

ij

f

i j
d

i j
=





,                     (1-2) 

where  

 

0,  
overlap ( , )

1,  otherwise

f f

f

i j
i j

=
=





  

  

avediff ( , )
max min

f f

f

f f

i j
i j

−
=

−
  

  

2) Kernel function 

Kernel function provides the result of predicted runtime 

estimates 
R

E  through similarities obtained from distance 

function and is formulated as 
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where 
j

R  is the actual runtime of related experience j and 

K(d) is the exponential kernel function used to derive the 

weight for runtime 
j

R  shown below. 

2
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B. Swarm Intelligence Optimization 

Swarm intelligence has been a popular nature-inspired 

metaheuristic optimization method for more than 20 years. 

Phoa et al. [18] introduced the Swarm Intelligence Based 

(SIB) method with two new operations, MIX and MOVE, to 

tackle optimization problems in discrete spaces, which are 

common in mathematical and statistical optimization. This 

method is then widely used in many applications, see 

[19]-[22]. The general idea of the SIB algorithm in depicted 
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in Fig. 1. 

In the step of initialization, possible solutions are 

generated as initial particles and the objective values for these 

particles are evaluated. Through evaluation, each particle 

perceives its own location of initial optimum in the search 

space called Local Best (LB) particles. All particles share 

information by comparing its LB with other to obtain the 

overall optimum called Global Best (GB) particle. For 

particles to collectively arrive at the perceived overall 

optimum solution, they go through the steps of MIX and 

MOVE operations iteratively after initialization. In the MIX 

operation, particle  exchanges elements with LB and GB 

particles to form new particles mixed LB and mixed GB 

respectively. In the MOVE operation, the objective value of 

mixed GB, mixed LB, and particle  are evaluated. A 

particle with better objective value is chosen to replace 

particle . However, if both mixed GB and mixed LB do not 

make particle  move toward a better location in the search 

space, elements in particle  would be replaced with any 

random particle as a prevention of being trapped in a locally 

optimal solution. GB and LBs are updated if any better 

solutions are found. LB particles and GB particle are updated 

continuously in every iteration until the stopping criterion is 

fulfilled.  

 

 
Fig. 1. The SIB algorithm. 

 

The stopping criteria can be the reach of either the 

pre-specified maximum number of iterations or a known 

optimal value of the GB particle. The former criterion is 

related to the computational capacity and expert’s experience. 

When all information of GB are required to be recorded, an 

exceptionally large number of iterations may exceed the 

computer’s memory. On the other hand, experts may suggest 

a certain number of iterations from their experience because 

the GB may no longer change their locations afterwards. The 

latter criterion is related to existing theoretical results in the 

literature. In some cases, the optimal values can be 

determined theoretically, so it can serve as a termination 

criterion for the SIB method. 

 

III. RUNTIME ESTIMATION AND JOB SCHEDULING ON 

SUPERCOMPUTERS 

This section introduces the method of runtime estimation 

on user workloads using IBL and describes a newly designed 

SIB scheduling algorithm for supercomputers. 

A. Job Runtime Estimation 

This work evaluates the prediction technique using data 

from the ALPS supercomputer system. Characteristics of 

execution jobs in ALPS have shown in Table I. 

 
TABLE I: FEATURE OF WORKLOADS 

Input Features 

Feature Feature Feature 

User ID User ID User ID 

Queue Name Queue Name Queue Name 

Job Name Job Name Job Name 

Number of CPU 
Cores 

Number of  CPU 
Cores 

Number of  CPU 
Cores 

Submit Time Submit Time Submit Time 
Output Feature 

Feature Feature Feature 

Runtime Runtime Runtime 

 

Through correlation analysis, a strong degree of 

dependency between jobs summited by users and the runtime 

feature can be found. As a result, the search space of every 

new input data is separated into various partitions according 

to different users. For instance, if user 1 submits a new job to 

the system to perform IBL prediction, the system only 

considers user 1’s historical experiences as a relevant dataset 

for runtime estimation. This not only preserves data locality 

but also decreases the search space to perform similarity 

computation, which would cause huge computation burden 

when the entire dataset is considerably large.  

After deciding the relevant dataset of user 1, the distance 

function between input data and all experiences in the dataset 

are calculated. All distance metrics are now available for the 

next step. Finally,  nearest neighbors with the lowest values 

of distances are chosen. The runtime prediction of the newly 

submitted job is determined by these  nearest neighbors 

using the kernel function.  

The estimation procedure can be generalized into four 

major steps upon receiving a new job request: 

1) Dataset determination  

The identity of job submitter is first determined. Afterward, 

the submitter’s past experiences are chosen as the relevant 

dataset to perform IBL. 

2) Similarity computation 

The similarity metric between features from the new input 

and its corresponding experiences in the relevant dataset is 

computed with the distance function. 

3) K-Nearest neighbors 

After acquiring all similarity metrics,  experiences with 

the lowest similarity values are selected as the final dataset to 

perform runtime prediction. Through simulations, the results 

show that the estimation provides great accuracy when only 

three nearest experiences (K = 3) are selected as the final 

dataset. This decision of the parameter  K narrows down the 
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estimation complexity without compromising the overall 

accuracy. Note that the selection of K = 3 is mainly due to 

empirical evaluation and experience. This selection can 

provide accurate estimations in terms of stable RMSE 

estimation with low variance, and the results are no worse 

than the suggested value of K mentioned in [23]. However, 

instead of directly using our choice, we suggest a detailed 

investigation on the suitable value of K when other problems 

are being handled. 

4) Runtime estimate 

The kernel function takes the experiences in the final 

dataset as input and comes out with the runtime estimation 

result for the input data.  

B. Swarm Intelligence Based Scheduling 

In previous researches, like most of the evolutionary 

algorithms, SIB optimization focused on unconstrained and 

non-ordering problems. In supercomputer scheduling, 

however, resource constraints on remaining supercomputer 

cores needs consideration. Every scheduling decision should 

concern the availability of cores in every time slot in order to 

make full use of the resources and result in an efficient job 

schedule that reduces the total operating time.  

Under busy traffic conditions, job arrivals are large and 

have to wait in the queue for processing. The scheduler 

reschedules the arrival jobs in every tupdate time units. During 

tupdate, the scheduler awaits for new arrivals while the 

supercomputer simultaneously provides operations on 

previously arrived jobs. To provide scheduling efficiency, the 

setting of tupdate has to satisfy two conditions. First, it has to be 

larger than the total makespan tmakespan of previous assigned 

jobs in the system so the supercomputer would not be waiting 

without serving any jobs. Second, it should be large enough 

for a certain amount of new jobs to arrive so that the 

scheduling result would be influential enough to upgrade 

system’s performance.  

The times for makespan and update are correlated. By 

definitions, tupdate refers to the waiting time of the 

supercomputer scheduler to wait for incoming jobs before 

scheduling, and tmakespan refers to the total time (from the 

previous end time to the next start time) for a computer to 

finish all jobs. Their correlation guarantees that the 

supercomputer would always be working such that the 

scheduler waits for arrivals of incoming job requests and the 

computer would not be idle any time. 

We denote  is the average arrival rate of jobs and  is the 

average amount of finishing workloads in the one-time unit. 

Then /  corresponds to the resulting expected computer 

makespan from the arrival jobs in every time units and  

tupdate． /  becomes the expected makespan caused by the 

scheduler in the waiting process. To satisfy the two criteria, 

the relationship of tupdate and tmakespan leads to  

expected tmakespan ≥  tupdate                                         (4) 

Simple algebra leads to /  ≥ 1. This implies that when the 

traffic is large enough, the computer would not be idle while 

the scheduler waits for arrivals of incoming job requests. 

In this research, the objective of a scheduling decision is to 

minimize total waiting time of all user-submitted jobs. This 

objective ensures fairness on waiting time for different jobs is 

considered while improving system’s performance on total 

operation time. While being processed, the job  requires  

processing cores and  units of processing time with job 

starting time . The total amount of available cores in the 

supercomputer is denoted as . The optimization problem 

can be formulated as follows.  
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where  S ( )t  is the set of all submitted jobs during the time 

interval t .  

Jobs being assigned after  tupdate  would only be scheduled 

on the supercomputer in the next scheduling session. 

Therefore, to enhance the fairness of the waiting time of all 

jobs. 
update

t  is added as a penalty factor to the objective 

value for assigning any jobs after tupdate. 

In order to solve the constrained optimization problem, 

this work designs a new particle formation and a novel MIX 

operation for SIB scheduling. In SIB scheduling, every 

particle is designed to represent a list of scheduling priority 

and every element in a particle represents a job ID. Every 

particle’s performance is evaluated by decoding the priority 

list into job schedules through the parallel scheduling 

generation scheme. In this research, the idea of particle 

transformation is applied due to its merit that the scheduling 

result decoded from particles after MIX and MOVE is still 

feasible to construct a resource feasible project schedule. 

1) Parallel scheduling generation scheme 

A parallel scheduling generation scheme iterates over the 

time stamp of projects and adds jobs that are eligible to the 

schedule. Scheduling starts at the time point  and 

schedules jobs before the time pointer is increased. It selects a 

job at each decision point  from the eligible job set  and 

assigns a scheduling sequence of these eligible jobs 

according to the priority list in each particle. The 

pseudo-code of the scheme is as follows: 

 

Algorithm 1 Parallel Schedule Generation Scheme 

Initialize: , , ,  

while  do 

   

   

   Calculate: , , ,  

  while  do 

    Select the first job  

     

    Calculate: , ,  

  end while 

end while 

. 
 

where the complete set  contains all jobs that have been 

scheduled and completed before  and the active set  

contains all scheduled but unfinished jobs.  corresponds to 
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the finishing time of the job , where  is the remaining 

core available at the time  so that 

. 

2) MIX operation for SIB scheduling 

Instead of exchanging particle elements with LB and GB, 

new particles are formed through the idea of imitation. 

During MIX operation, every particle  imitates the priority 

order of a good particle (LB or GB) starting from the first 

element. In every iteration, a position and job ID of the 

element  of the good particle is perceived. Particle  

searches its own elements to find the index that contains the 

value . After finding the corresponding index, particle  

swaps the job ID in that index with the initially perceived 

position in the good particle. The pseudocode of the MIX is 

shown below. The  returns the 

index of  that contains the value .  

 

Algorithm 2 MIX Operation in SIB Scheduling 

Initialize:  

while  do 

   

   

   

   

   

   

end while 

 

IV. SIMULATION 

The simulation performed in this section is carried out by a 

SIB program written in R. This section evaluates the 

performance of the proposed runtime prediction technique 

and the efficiency of SIB supercomputer scheduling using 

data from the ALPS supercomputer. Workloads from January 

to December 2016 with the total amount of 804697 data are 

used to evaluate the designs in this work. 

A. Runtime Prediction Evaluation 

In the simulation, the training workload consists of 563287 

experiences and the testing workload contains 241410 

inserting data. The performance of the proposed runtime 

prediction is evaluated using Root-Mean-Squared Error 

(RMSE) indicator as shown in Table II.  

The runtime prediction scheme provides an average 

estimation error of 20.73 minutes with a standard deviation of 

33.82 minutes. The best estimation error can be achieved 

below 1 minute, while the error in the worst case is bounded 

by 151.58 minutes. The result shows that the prediction 

provides good accuracy on runtime estimation. 

TABLE II: RMSE OF RUNTIME PREDICTION 

RMSE Estimation (minutes) 

Mean RMSE  SD RMSE Worst RMSE  Best RMSE  

20.73 (m) 33.82 (m) 151.58 (m) 0.22 (m) 

B. SIB Scheduling Evaluation 

The performance of the SIB scheduling design is 

compared with the EASY scheduling scheme. New inserting 

jobs are sampled from the 241410 testing data workloads. 

The scheduling schemes use the estimated time from IBL 

runtime prediction to determine their schedules. The total 

makespan of the actual execution time of the works between 

two different designs is evaluated as the indicator of 

scheduling performance. In order to examine the efficacy of 

the scheduling design under every condition of busy traffic, 

the worst case, that is tupdate = tmakespan, is considered in the 

simulation.  

The performance between different amounts of sampled 

workloads and total makespans for two different scheduling 

schemes is demonstrated. The impact of the number of initial 

particles on the SIB scheduling performance is also shown in 

Fig. 2. The performance on the makespan of job arrivals of 

SIB scheduling outperforms the EASY scheduling scheme. 

Moreover, as the number of the initial particles (seed) 

increases, the scheduling performance of the SIB upgrades to 

a higher level. The performance of SIB scheduling on a 

supercomputer is proved to be efficient. 

 
 

 
Fig. 2(a). SIB versus EASY at 50 seeds. 

 

 
Fig. 2(b). SIB versus EASY at 100 seeds. 

 

 
Fig. 2(c). SIB versus EASY at 150 seeds. 

 

As shown in Fig. 2(a) to Fig. 2(c), the performance on the 

makespan of job arrivals of SIB scheduling outperforms the 

EASY scheduling scheme. Moreover, as the number of the 

initial particles (seeds) increases, the scheduling performance 
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of the SIB upgrades to a higher level. The performance of 

SIB scheduling on a supercomputer is proved to be efficient. 

 

V. CONCLUSIONS  

To improve supercomputer’s running efficiency, it is 

important to both upgrade the accuracy of runtime prediction 

and enhances the efficiency of the scheduling algorithm, 

while maintaining the system to work below a certain 

complexity level. This work proposes a new two-step 

approach that performs a runtime prediction scheme via 

instance-based learning and conducts a novel scheduling 

algorithm via swarm intelligence. Both steps require little 

computation efforts compared to classic neural network 

learning and convex optimizations. The instance-based 

learning runtime estimation scheme is proposed based on the 

characteristics of the data in the ALPS supercomputer to 

improve the accuracy of prediction while the new swarm 

intelligence scheduling algorithm is designed to optimize the 

performance and achieve both efficiency on runtime 

makespan and fair resource allocation on supercomputers 

under busy traffic conditions.  

There are several potential improvements and extensions 

from this work. First, the CPU runtime estimation in the first 

step can be significantly improved if additional information 

on the incoming jobs can be provided. The dataset we 

analyzed in this work consisted of only four features, which 

are obviously not enough for good estimations on CPU 

runtime no matter what statistical tools are used. Additional 

information on the property of jobs and users will greatly 

help in the learning procedure. Nevertheless, an accurate 

CPU runtime estimation is the first step to the success of the 

whole method. 

Another possible extension comes from the adaptive 

approach for the scheduler to switch its operating mode 

according to the current job traffic status. By a given 

threshold, it is ideal that the scheduler activates the SIB when 

the traffic is above the threshold, and other simple schemes 

are operated otherwise.  

In addition to extra feature, one may consider using other 

learning approaches instead of instance-based learning to 

handle the estimation of CPU runtime. For example, deep 

learning can be a good tool to classify whether the job is a test 

job (that requires few CPU cores and short CPU runtime) or a 

real job (that requires a lot of CPU cores and long CPU 

runtime). Bayesian model can also be applied when historical 

data are available as a prior to the current estimation. When 

more features are available, many different class of 

regression or parametric estimations can lead to more 

accurate results.  
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