

Abstract—Supercomputing has been indispensable in the

unstoppable trend of high-speed computing evolution. This

work aims at improving its running efficacy by introducing a

new two-step scheduling approach. Based on the analysis of

large historical data, we provide an accurate runtime estimation

scheme using Instance-Based Learning (IBL) in the first step.

Then a swarm intelligence based scheduling (SIBS) method is

proposed to optimize the scheduling performance in terms of

total runtime makespan and fair resource allocation. A method

comparison on a dataset from the ALPS supercomputer, which

consists of 804k workload data in 2016, shows that our proposed

method outperforms the most commonly used strategy –

Extensible Argonne Scheduling System (EASY).

Index Terms—Supercomputer, scheduling, swarm

intelligence, instance-based learning, runtime estimation.

I. INTRODUCTION

With the advancement in technology, many high-speed

computing techniques have emerged. Applications

unimaginable in past few years has now become achievable.

Owing to the development on Internet applications [1] and

new computing schemes, scenarios such as cloud computing

[2] and parallel computing [3] have come into play and

resulted in dramatic improvements in high-speed

computation [4]-[6]. Consequently, new fields of studies such

as big data analysis and artificial intelligence have started to

thrive. Supercomputer, a high-level performance computer,

consists of tens of thousands of processors that are capable of

performing billions to trillions of calculations per second and

achieving massive computing power is, without doubt, the

indispensable role in the unstoppable trend of high-speed

computing evolution. Therefore, efficiently improving

performance on a supercomputer would be without doubt a

vital issue. Many institutions have started to increasingly add

computing cores to achieve higher computation performance.

However, [7] shows that simply expanding the number of

processing nodes and leveraging technology scaling would

not be an efficient way to improve the processing power of

Manuscript received May 12, 2019; revised August 1, 2019.
F. P. C. Lin was with the Graduate Institute of Communication

Engineering, National Taiwan University, Taipei 10617, Taiwan (e-mail:

frank555076@gmail.com).
F. K. H. Phoa is with the Institute of Statistical Science, Academia Sinica,

Taipei 11529, Taiwan (e-mail: fredphoa@stat.sinica.edu.tw).

supercomputers, as power demand would increase

unsustainably. To improve supercomputer’s running efficacy,

many researchers have devoted full effort into supercomputer

scheduling [8]-[11], coming up with various scheduling

schemes to enhance the overall performance of the

supercomputer without the need of setting up additional

hardware.

Before designing the scheduling scheme, an important

factor in scheduling performances is the runtime estimation.

It is an important attribute used by the schedulers in various

scenarios. Its accuracy is proved to be highly correlated with

scheduling performances by [12]. Researchers have been

working thoroughly on this topic [13]-[16], trying to come up

with different solutions to provide accurate estimates of

runtime data. It would be important to have good domain

knowledge and insight with their own runtime data to

improve the accuracy of estimation. This work applies the

data offered by the supercomputer, Advanced Large-scale

Parallel Supercluster (ALPS) in National Center for

High-Performance Computing (NCHC) in Taiwan.

As the need for large computation keeps increasing, large

traffic workload has gradually become a burden for ALPS.

To handle this issue, this work provides two major

contributions. First, an accurate runtime estimation scheme

based on the analysis of a large historical data from ALPS is

proposed using Instance-Based Learning (IBL) [17]. Second,

a new scheduling scheme for supercomputers on large traffic

load using Swarm Intelligence is designed.

A scheduling scheme is a critical factor to the performance

of a supercomputer. Many researchers have as well

concentrated on the design of supercomputer scheduling

trying to obtain a suitable approach in the optimization of

various goals. Due to the attractiveness in simplicity,

effectiveness, and fairness, the most common used strategy in

supercomputer scheduling is FCFS (First-Come First Served)

with backfilling, also known as the term EASY (Extensible

Argonne Scheduling System). Although easy to implement,

job scheduling on supercomputers, however, can be

complicated due to diverse demands of system administrators

and may not be enough to be effectively approached by

simply applying EASY. In fact, runtime efficiency and

fairness are usually conflicting goals to be achieved. The

inefficiency becomes evident especially when the workload

is large. Therefore, to both consider the runtime efficiency

and user fairness comprehensively while preserving the

feature of simple implementation in EASY, a heterogeneous

non-preemptible scheduling scheme to obtain a real-time

scheduling on large traffic workload is proposed. This work

Runtime Estimation and Scheduling on Parallel Processing

Supercomputers via Instance-Based Learning and Swarm

Intelligence

Frank Po-Chen Lin and Frederick Kin Hing Phoa

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

592doi: 10.18178/ijmlc.2019.9.5.845

mailto:tingchulee@gmail.com

designs a Swarm Intelligence Based Scheduling (SIBS)

method to optimize the performance and achieve both

efficiencies on total runtime makespan and fair resource

allocation.

By combining IBL and SIBS, this work designs a new

two-step approach that performs a runtime prediction scheme

and conducts a novel scheduling algorithm for efficient

supercomputing scheduling problem. Both steps require little

computation efforts compared to classic neural network

learning and convex optimizations. The rest of the paper is

organized as follows. In Section II background knowledge on

IBL and original SIB optimization are provided. Section III

presents the design of IBL runtime estimation, based on data

from ALPS, and the modified SIB for resource-constrained

job scheduling. In Section IV, the simulation setup is

described and the result of the proposal is evaluated. Finally,

Section V concludes the paper and outlines the contribution

of this work.

II. BACKGROUND

To provide an efficient approach to improve the

performance of a supercomputer, both runtime estimation,

and job scheduling should not only be operative but also

computationally effective. For runtime estimation, global

parametric learning algorithms, such as neural networks,

attempt to establish an input-output mapping via a single

function with a global network view. However, this would

neglect important properties of data partitions when the input

is highly correlated to local data, which is often the case for

runtime estimation. This work found IBL most suitable and

perform good results of our estimates. For scheduling, classic

optimization approaches such as nonlinear programming or

dynamic programming can compute the exact solution and

have better accuracy but are computationally

time-consuming when the large-scale problem is considered.

Therefore, this research designs a metaheuristic approaches

SIB that gives near-optimal answers but is computationally

efficient.

A. Instance-Based Learning

Runtime prediction of new input data is formed through

past related experiences in a historical database. Experiences

consist of several input features and one output result. Every

input features depict the characteristics of the data while the

output describes the runtime result corresponding to the

conditions of these features. New input data consists of only

input features whereas its runtime prediction is formed based

on these features. Generally speaking, instead of querying the

entire experiences in the database to form a prediction, only

past experiences with high correlated input features are used

as training sets to provide runtime estimation through

similarity calculation. This allows an estimate to preserve

useful local information and filter out unrelated information

that would degrade the performance of accuracy.

IBL can be categorized into two major parts: similarity

calculation and kernel regression. In similarity calculation, a

distance function is defined as an indicator of similarity

between two data according to the feature of the attributes. In

kernel regression, a weighted-distance average of output is

provided for final runtime prediction. The weights given to

different runtimes are defined by the kernel function. The

kernel function determines the weights on a given runtime

data according to the measured similarity between input and

historical experiences.

In summary, the preprocessing procedure of IBL starts with

the search of the relevant historical data records (past

experiences) according to the value obtained from the

similarity metrics like distance function. Then it selects the

first k important data (data with top k lowest distance values)

for runtime estimation and filters out the rest.

1) Distance function

The distance function for similarity measure is defined as

1

1

(,)

n f f

f ij ijf

ij n f

f ijf

w d
d d i j

w





=

=

= =



, (1)

where is the feature, is its weight,

1, if feature exists in both data

0, otherwise

f

ij

f
 =





, (1-1)

overlap (,), if nominal

avediff (,), if numerical

ff

ij

f

i j
d

i j
=





, (1-2)

where

0,
overlap (,)

1, otherwise

f f

f

i j
i j

=
=





avediff (,)
max min

f f

f

f f

i j
i j

−
=

−

2) Kernel function

Kernel function provides the result of predicted runtime

estimates
R

E through similarities obtained from distance

function and is formulated as

((,))
()

((,))

ji

R

i

K d i j R
E i

K d i j
=




 (2)

where
j

R is the actual runtime of related experience j and

K(d) is the exponential kernel function used to derive the

weight for runtime
j

R shown below.

2
() exp()K d d= − . (3)

B. Swarm Intelligence Optimization

Swarm intelligence has been a popular nature-inspired

metaheuristic optimization method for more than 20 years.

Phoa et al. [18] introduced the Swarm Intelligence Based

(SIB) method with two new operations, MIX and MOVE, to

tackle optimization problems in discrete spaces, which are

common in mathematical and statistical optimization. This

method is then widely used in many applications, see

[19]-[22]. The general idea of the SIB algorithm in depicted

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

593

in Fig. 1.

In the step of initialization, possible solutions are

generated as initial particles and the objective values for these

particles are evaluated. Through evaluation, each particle

perceives its own location of initial optimum in the search

space called Local Best (LB) particles. All particles share

information by comparing its LB with other to obtain the

overall optimum called Global Best (GB) particle. For

particles to collectively arrive at the perceived overall

optimum solution, they go through the steps of MIX and

MOVE operations iteratively after initialization. In the MIX

operation, particle exchanges elements with LB and GB

particles to form new particles mixed LB and mixed GB

respectively. In the MOVE operation, the objective value of

mixed GB, mixed LB, and particle are evaluated. A

particle with better objective value is chosen to replace

particle . However, if both mixed GB and mixed LB do not

make particle move toward a better location in the search

space, elements in particle would be replaced with any

random particle as a prevention of being trapped in a locally

optimal solution. GB and LBs are updated if any better

solutions are found. LB particles and GB particle are updated

continuously in every iteration until the stopping criterion is

fulfilled.

Fig. 1. The SIB algorithm.

The stopping criteria can be the reach of either the

pre-specified maximum number of iterations or a known

optimal value of the GB particle. The former criterion is

related to the computational capacity and expert’s experience.

When all information of GB are required to be recorded, an

exceptionally large number of iterations may exceed the

computer’s memory. On the other hand, experts may suggest

a certain number of iterations from their experience because

the GB may no longer change their locations afterwards. The

latter criterion is related to existing theoretical results in the

literature. In some cases, the optimal values can be

determined theoretically, so it can serve as a termination

criterion for the SIB method.

III. RUNTIME ESTIMATION AND JOB SCHEDULING ON

SUPERCOMPUTERS

This section introduces the method of runtime estimation

on user workloads using IBL and describes a newly designed

SIB scheduling algorithm for supercomputers.

A. Job Runtime Estimation

This work evaluates the prediction technique using data

from the ALPS supercomputer system. Characteristics of

execution jobs in ALPS have shown in Table I.

TABLE I: FEATURE OF WORKLOADS

Input Features

Feature Feature Feature

User ID User ID User ID

Queue Name Queue Name Queue Name

Job Name Job Name Job Name

Number of CPU
Cores

Number of CPU
Cores

Number of CPU
Cores

Submit Time Submit Time Submit Time
Output Feature

Feature Feature Feature

Runtime Runtime Runtime

Through correlation analysis, a strong degree of

dependency between jobs summited by users and the runtime

feature can be found. As a result, the search space of every

new input data is separated into various partitions according

to different users. For instance, if user 1 submits a new job to

the system to perform IBL prediction, the system only

considers user 1’s historical experiences as a relevant dataset

for runtime estimation. This not only preserves data locality

but also decreases the search space to perform similarity

computation, which would cause huge computation burden

when the entire dataset is considerably large.

After deciding the relevant dataset of user 1, the distance

function between input data and all experiences in the dataset

are calculated. All distance metrics are now available for the

next step. Finally, nearest neighbors with the lowest values

of distances are chosen. The runtime prediction of the newly

submitted job is determined by these nearest neighbors

using the kernel function.

The estimation procedure can be generalized into four

major steps upon receiving a new job request:

1) Dataset determination

The identity of job submitter is first determined. Afterward,

the submitter’s past experiences are chosen as the relevant

dataset to perform IBL.

2) Similarity computation

The similarity metric between features from the new input

and its corresponding experiences in the relevant dataset is

computed with the distance function.

3) K-Nearest neighbors

After acquiring all similarity metrics, experiences with

the lowest similarity values are selected as the final dataset to

perform runtime prediction. Through simulations, the results

show that the estimation provides great accuracy when only

three nearest experiences (K = 3) are selected as the final

dataset. This decision of the parameter K narrows down the

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

594

estimation complexity without compromising the overall

accuracy. Note that the selection of K = 3 is mainly due to

empirical evaluation and experience. This selection can

provide accurate estimations in terms of stable RMSE

estimation with low variance, and the results are no worse

than the suggested value of K mentioned in [23]. However,

instead of directly using our choice, we suggest a detailed

investigation on the suitable value of K when other problems

are being handled.

4) Runtime estimate

The kernel function takes the experiences in the final

dataset as input and comes out with the runtime estimation

result for the input data.

B. Swarm Intelligence Based Scheduling

In previous researches, like most of the evolutionary

algorithms, SIB optimization focused on unconstrained and

non-ordering problems. In supercomputer scheduling,

however, resource constraints on remaining supercomputer

cores needs consideration. Every scheduling decision should

concern the availability of cores in every time slot in order to

make full use of the resources and result in an efficient job

schedule that reduces the total operating time.

Under busy traffic conditions, job arrivals are large and

have to wait in the queue for processing. The scheduler

reschedules the arrival jobs in every tupdate time units. During

tupdate, the scheduler awaits for new arrivals while the

supercomputer simultaneously provides operations on

previously arrived jobs. To provide scheduling efficiency, the

setting of tupdate has to satisfy two conditions. First, it has to be

larger than the total makespan tmakespan of previous assigned

jobs in the system so the supercomputer would not be waiting

without serving any jobs. Second, it should be large enough

for a certain amount of new jobs to arrive so that the

scheduling result would be influential enough to upgrade

system’s performance.

The times for makespan and update are correlated. By

definitions, tupdate refers to the waiting time of the

supercomputer scheduler to wait for incoming jobs before

scheduling, and tmakespan refers to the total time (from the

previous end time to the next start time) for a computer to

finish all jobs. Their correlation guarantees that the

supercomputer would always be working such that the

scheduler waits for arrivals of incoming job requests and the

computer would not be idle any time.

We denote is the average arrival rate of jobs and is the

average amount of finishing workloads in the one-time unit.

Then / corresponds to the resulting expected computer

makespan from the arrival jobs in every time units and

tupdate． / becomes the expected makespan caused by the

scheduler in the waiting process. To satisfy the two criteria,

the relationship of tupdate and tmakespan leads to

expected tmakespan ≥ tupdate (4)

Simple algebra leads to / ≥ 1. This implies that when the

traffic is large enough, the computer would not be idle while

the scheduler waits for arrivals of incoming job requests.

In this research, the objective of a scheduling decision is to

minimize total waiting time of all user-submitted jobs. This

objective ensures fairness on waiting time for different jobs is

considered while improving system’s performance on total

operation time. While being processed, the job requires

processing cores and units of processing time with job

starting time . The total amount of available cores in the

supercomputer is denoted as . The optimization problem

can be formulated as follows.

update

()

min (), (); {0,1}.

() , 0.

. .

, , 0, ().

i i

i

c

i c

i A t

c

i i i

t d t i S t

r t R t

s t

t d r i S t

 



+ +  

  

 








 (5)

where S ()t is the set of all submitted jobs during the time

interval t .

Jobs being assigned after tupdate would only be scheduled

on the supercomputer in the next scheduling session.

Therefore, to enhance the fairness of the waiting time of all

jobs.
update

t is added as a penalty factor to the objective

value for assigning any jobs after tupdate.

In order to solve the constrained optimization problem,

this work designs a new particle formation and a novel MIX

operation for SIB scheduling. In SIB scheduling, every

particle is designed to represent a list of scheduling priority

and every element in a particle represents a job ID. Every

particle’s performance is evaluated by decoding the priority

list into job schedules through the parallel scheduling

generation scheme. In this research, the idea of particle

transformation is applied due to its merit that the scheduling

result decoded from particles after MIX and MOVE is still

feasible to construct a resource feasible project schedule.

1) Parallel scheduling generation scheme

A parallel scheduling generation scheme iterates over the

time stamp of projects and adds jobs that are eligible to the

schedule. Scheduling starts at the time point and

schedules jobs before the time pointer is increased. It selects a

job at each decision point from the eligible job set and

assigns a scheduling sequence of these eligible jobs

according to the priority list in each particle. The

pseudo-code of the scheme is as follows:

Algorithm 1 Parallel Schedule Generation Scheme

Initialize: , , ,

while do

 Calculate: , , ,

 while do

 Select the first job

 Calculate: , ,

 end while

end while

.

where the complete set contains all jobs that have been

scheduled and completed before and the active set

contains all scheduled but unfinished jobs. corresponds to

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

595

the finishing time of the job , where is the remaining

core available at the time so that

.

2) MIX operation for SIB scheduling

Instead of exchanging particle elements with LB and GB,

new particles are formed through the idea of imitation.

During MIX operation, every particle imitates the priority

order of a good particle (LB or GB) starting from the first

element. In every iteration, a position and job ID of the

element of the good particle is perceived. Particle

searches its own elements to find the index that contains the

value . After finding the corresponding index, particle

swaps the job ID in that index with the initially perceived

position in the good particle. The pseudocode of the MIX is

shown below. The returns the

index of that contains the value .

Algorithm 2 MIX Operation in SIB Scheduling

Initialize:

while do

end while

IV. SIMULATION

The simulation performed in this section is carried out by a

SIB program written in R. This section evaluates the

performance of the proposed runtime prediction technique

and the efficiency of SIB supercomputer scheduling using

data from the ALPS supercomputer. Workloads from January

to December 2016 with the total amount of 804697 data are

used to evaluate the designs in this work.

A. Runtime Prediction Evaluation

In the simulation, the training workload consists of 563287

experiences and the testing workload contains 241410

inserting data. The performance of the proposed runtime

prediction is evaluated using Root-Mean-Squared Error

(RMSE) indicator as shown in Table II.

The runtime prediction scheme provides an average

estimation error of 20.73 minutes with a standard deviation of

33.82 minutes. The best estimation error can be achieved

below 1 minute, while the error in the worst case is bounded

by 151.58 minutes. The result shows that the prediction

provides good accuracy on runtime estimation.

TABLE II: RMSE OF RUNTIME PREDICTION

RMSE Estimation (minutes)

Mean RMSE SD RMSE Worst RMSE Best RMSE

20.73 (m) 33.82 (m) 151.58 (m) 0.22 (m)

B. SIB Scheduling Evaluation

The performance of the SIB scheduling design is

compared with the EASY scheduling scheme. New inserting

jobs are sampled from the 241410 testing data workloads.

The scheduling schemes use the estimated time from IBL

runtime prediction to determine their schedules. The total

makespan of the actual execution time of the works between

two different designs is evaluated as the indicator of

scheduling performance. In order to examine the efficacy of

the scheduling design under every condition of busy traffic,

the worst case, that is tupdate = tmakespan, is considered in the

simulation.

The performance between different amounts of sampled

workloads and total makespans for two different scheduling

schemes is demonstrated. The impact of the number of initial

particles on the SIB scheduling performance is also shown in

Fig. 2. The performance on the makespan of job arrivals of

SIB scheduling outperforms the EASY scheduling scheme.

Moreover, as the number of the initial particles (seed)

increases, the scheduling performance of the SIB upgrades to

a higher level. The performance of SIB scheduling on a

supercomputer is proved to be efficient.

Fig. 2(a). SIB versus EASY at 50 seeds.

Fig. 2(b). SIB versus EASY at 100 seeds.

Fig. 2(c). SIB versus EASY at 150 seeds.

As shown in Fig. 2(a) to Fig. 2(c), the performance on the

makespan of job arrivals of SIB scheduling outperforms the

EASY scheduling scheme. Moreover, as the number of the

initial particles (seeds) increases, the scheduling performance

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

596

of the SIB upgrades to a higher level. The performance of

SIB scheduling on a supercomputer is proved to be efficient.

V. CONCLUSIONS

To improve supercomputer’s running efficiency, it is

important to both upgrade the accuracy of runtime prediction

and enhances the efficiency of the scheduling algorithm,

while maintaining the system to work below a certain

complexity level. This work proposes a new two-step

approach that performs a runtime prediction scheme via

instance-based learning and conducts a novel scheduling

algorithm via swarm intelligence. Both steps require little

computation efforts compared to classic neural network

learning and convex optimizations. The instance-based

learning runtime estimation scheme is proposed based on the

characteristics of the data in the ALPS supercomputer to

improve the accuracy of prediction while the new swarm

intelligence scheduling algorithm is designed to optimize the

performance and achieve both efficiency on runtime

makespan and fair resource allocation on supercomputers

under busy traffic conditions.

There are several potential improvements and extensions

from this work. First, the CPU runtime estimation in the first

step can be significantly improved if additional information

on the incoming jobs can be provided. The dataset we

analyzed in this work consisted of only four features, which

are obviously not enough for good estimations on CPU

runtime no matter what statistical tools are used. Additional

information on the property of jobs and users will greatly

help in the learning procedure. Nevertheless, an accurate

CPU runtime estimation is the first step to the success of the

whole method.

Another possible extension comes from the adaptive

approach for the scheduler to switch its operating mode

according to the current job traffic status. By a given

threshold, it is ideal that the scheduler activates the SIB when

the traffic is above the threshold, and other simple schemes

are operated otherwise.

In addition to extra feature, one may consider using other

learning approaches instead of instance-based learning to

handle the estimation of CPU runtime. For example, deep

learning can be a good tool to classify whether the job is a test

job (that requires few CPU cores and short CPU runtime) or a

real job (that requires a lot of CPU cores and long CPU

runtime). Bayesian model can also be applied when historical

data are available as a prior to the current estimation. When

more features are available, many different class of

regression or parametric estimations can lead to more

accurate results.

ACKNOWLEDGEMENT

The authors would like to thank the National Center for

High-Performance Computing (NCHC), Taiwan to provide

the raw data on supercomputing scheduling, and provide

computer time and facilities. The authors would also like to

thank Dr. Tai-Chi Wang of NCHC for his constructive

suggestions and discussions to improve the quality of this

paper. This work was supported in part by the Career

Development Award of Academia Sinica (Taiwan) Grant

Number 103-CDA-M04, and the Ministry of Science and

Technology (Taiwan) Grant Numbers 107-2321-B-001-038

and 107-2118-M-001-011-MY3.

REFERENCES

[1] S. H. Wang, F. P. C. Lin, and C. P. Li, "Secure channel estimation

method in TDD OFDM systems," in Proc. 2016 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting

(BMSB), 2016, pp. 1-4.

[2] A. Goyal and S. Dadizadeh, "A survey on cloud computing,"
University of British Columbia Technical Report for CS, vol. 508, pp.

55-58, 2009.
[3] F. P.-C. Lin and F. K. H. Phoa, "A performance study of parallel

programming via CPU and GPU on swarm intelligence based

evolutionary algorithm," in Proc. 2017 International Conference on
Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI 2017)

Proceedings, 2017, pp. 1-5.
[4] Y. A. Basallo, V. E. Senti, and N. M. Sanchez, "Artificial intelligence

techniques for information security risk assessment," IEEE Latin

America Transactions, vol. 16, no. 3, pp. 897-901, 2018.
[5] A. V. D. Mei and J. P. Doomernik, "Artificial intelligence potential in

power distribution system planning," CIRED - Open Access

Proceedings Journal, no. 1, pp. 2115-2117, 2017.

[6] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, "A memristor-based

optimization framework for artificial intelligence applications," IEEE
Circuits and Systems Magazine, vol. 18, no. 1, pp. 29-44, 2018.

[7] F. Fraternali, A. Bartolini, C. Cavazzoni, and L. Benini, "Quantifying
the impact of variability and heterogeneity on the energy efficiency for

a next-generation ultra-green supercomputer," IEEE Transactions on

Parallel and Distributed Systems, vol. 29, no. 7, pp. 1575-1588, 2018.
[8] D. Tsafrir, Y. Etsion, and D. G. Feitelson, "Backfilling using

system-generated predictions rather than user runtime estimates,"
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6,

pp. 789-803, 2007.

[9] W. Tang, D. Ren, Z. Lan, and N. Desai, "Toward balanced and
sustainable job scheduling for production supercomputers," Parallel

Computing, vol. 39, no. 12, pp. 753-768, 2013.
[10] D. Tsafrir et al., Modeling, Evaluating, and Improving the

Performance of supercomputer Scheduling, Hebrew University, 2006.

[11] M. F. Tompkins, "Optimization techniques for task allocation and
scheduling in distributed multi-agent operations," Massachusetts

Institute of Technology, 2003.
[12] D. Tsafrir and D. G. Feitelson, "The dynamics of backfilling: solving

the mystery of why increased inaccuracy may help," in Proc. 2006

IEEE International Symposium on Workload Characterization, 2006,
pp. 131-141.

[13] D. Tsafrir, Y. Etsion, and D. G. Feitelson, "Modeling user runtime
estimates," Job Scheduling Strategies for Parallel Processing, Berlin,

Heidelberg, 2005, pp. 1-35.

[14] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky, "Estimating
computation times of data-intensive applications," IEEE Distributed

Systems Online, vol. 5, no. 4, p. 1, 2004.
[15] W. Tang, N. Desai, D. Buettner, and Z. Lan, "Job scheduling with

adjusted runtime estimates on production supercomputers," Journal of

Parallel and Distributed Computing, vol. 73, no. 7, pp. 926-938, 2013.
[16] M. A. Iverson, F. Ozguner, and L. C. Potter, "Statistical prediction of

task execution times through analytic benchmarking for scheduling in a
heterogeneous environment," in Proc. Heterogeneous Computing

Workshop, 1999, pp. 99-111.

[17] W. Smith, "Prediction services for distributed computing," in Proc.

2007 IEEE International Parallel and Distributed Processing

Symposium, 2007, pp. 1-10.
[18] F. K. H. Phoa, "A swarm intelligence based (SIB) method for

optimization in designs of experiments," Natural Computing, vol. 16,

pp. 597-605, 2017.
[19] F. K. H. Phoa, R. B. Chen, W. C. Wang, and W. K. Wong, "Optimizing

two-level supersaturated designs via swarm intelligence techniques,"
Technometrics, vol. 58, pp. 43-49, 2016.

[20] F. K. H. Phoa and L. L. H. Chang, "A multi-objective implementation

in swarm intelligence with applications in designs of computer
experiments," in Proc. International Conference of Natural Computing

Proceedings, 2016, pp. 253-258.
[21] F. P. C. Lin and F. K. H. Phoa, "An efficient construction of confidence

regions via swarm intelligence and its application in target

localization," IEEE Access, vol. 6, pp. 8610-8618, 2018.
[22] T. C. Tsu and F. K. H. Phoa, "A smart initialization on the swarm

intelligence based method for efficient search of optimal minimum
energy design," Advances in Swarm Intelligence, vol. 10941, pp. 78-87,

2018.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

597

[23] M. A. Iverson, F. Ozguner, and L. Potter, "Statistical prediction of task

execution times through analytic benchmarking for scheduling in a
heterogeneous environment," IEEE Transactions on Computers, vol.

48, pp. 1374-1379, 1999.

Frank Po-Chen Lin received the B.S. degree in
electrical engineering from National Sun Yat-sen

University, Taiwan, in 2016 and the M.S. degree from
National Taiwan University, Taiwan in 2018. He is a

research assistant with the Institute of Statistical

Science, Academia Sinica. His current research
interests include software defined networking,

scheduling algorithm designs, parallel computing and
supercomputing. He was a recipient of the College

Student Research Creativity Award in the Ministry of

Science and Technology, Taiwan, in 2016.

Frederick Kin Hing Phoa received the Ph.D. degrees

in statistics from the University of California at Los

Angeles (UCLA), Los Angeles, CA, USA, in 2009. In
the Institute of Statistical Science, Academia Sinica,

Taiwan, he was an assistant research fellow from 2009
to 2013, and an associate research fellow from 2013 to

2018, and he was promoted to a full research fellow in

2018. He is an author of over 50 scientific articles, a
speaker of over 100 invited talks in the international

conferences and 60 seminar talks in the universities around the world. His

research interests include design and analysis of physical, computer and
network experiments, analysis of internet and social media data, network

data analysis, nature-inspired metaheuristics optimization, big data analysis,

stochastic control in large-scale systems, semiparametric methods to the data

with missing covariates, deep learning and neural network modeling. Dr.

Phoa was a recipient of the Career Development Award in 2014, the Ta-You
Wu Memorial Award in 2014, and the Best Paper Award in the World

Congress of Engineering in 2015. He was a recipient of the Special Talent
Researcher Awards consecutively from 2012 to 2018. He received the

Excellent Young Researcher Project from 2013 to 2016 supported by the

Ministry of Science and Technology (MOST), Taiwan, and the International
Cost-Share Exchanges Scheme Project from 2016 to 2018 between the

MOST and the Royal Society of U.K.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

598

