

Abstract—Software companies, that adopt agile

methodologies in the development of a large and complex

software product, encounter the problem of selecting the subset

of requirements to be included in the next release of the product.

This problem is known as the next release problem (NRP). NRP

is identified as an NP-hard problem as it involves a set of

conflicting objectives that need to be addressed. These

objectives are as follows: (1) maximizing the customer

satisfaction taking into consideration that each customer has an

importance level to the company, and (2) minimizing the

development cost such that it does not exceed the allocated

budget. Furthermore, the requirements have dependency and

precedence relationships, and each requirement has a priority

for each customer according to the customer’s needs. Therefore,

metaheuristic algorithms are good candidate for tackling this

problem. This paper proposes a hybrid approach to address the

multi-objective constrained NRP. The proposed approach is

based on adapting an improved binary particle swarm

optimization (IBPSO) algorithm. Additionally, a greedy

methodology was utilized for swarm initialization to seed the

swarm with good solutions. Experimental results, of over six

small and large NRP instances, demonstrated that the proposed

approach converges much faster to solutions better than the

ones discovered by the original binary PSO.

Index Terms—Next release problem, binary PSO, swarm

intelligence, requirements engineering.

I. INTRODUCTION

During the last decade agile methodologies [1] have

gained a substantial popularity among software development

companies. In these methodologies, the software product is

developed through releases that have to be produced within

iterative cycles. Each release includes a new subset of the

requirements that should meet the needs of the customers and

should be developed within the allocated budget for each

iteration [2]. The following constraints must be taken into

consideration: (1) The customers have different importance

levels to the company, (2) the precedence and dependency

relationships among the requirements such that some

requirements cannot be developed before others, (3) each

requirement has a development cost and (4) requirements

have different priority levels to the different customers. This

problem is known in the literature as the next release problem

(NRP) [3], [4].

The larger the set of requirements, the more complex the

NRP gets; due to the huge number of possible combinations

 Manuscript received May 14, 2019; revised August 1, 2019.

A. Hamdy is with the Faculty of Informatics and Computer Science,

British University in Egypt, El-Sherouk City, Egypt, on secondment from

Computers and Systems Department, Electronics Research Institute, Giza,
Egypt (e-mail: abeer.hamdy@bue.edu.eg).

that can be formed by all the features. In addition to

considering the aforementioned constraints, this context

leaves the decision maker with 2𝑛 possible combinations to

decide from. This is why the NRP is considered one of the

complex combinatorial optimization problems [3].

Maximizing the total satisfaction of the customers, and

minimizing the company’s development cost/effort, are two

conflicting objectives that categorize the NRP as a multi-

objective optimization problem which is best tackled by

metaheuristic algorithms [4]. Some researchers tackled the

NRP problem using PSO [5]-[9], ant colony optimization

(ACO) [5], [10]-[12], genetic algorithms (GA) [5], [16], [13]-

[15]. Some previous research proved that the original BPSO

(OBPSO) surpasses both of the ant colony and the GA [3] in

solving the NRP, especially the large scale NRP.

This paper proposes a solution to the constrained multi-

objective NRP using a hybrid approach that adapts an

improved version of the BPSO (IBPSO) [16] and a greedy

methodology for the swarm initialization.

A. Research Questions

The paper aims at answering the following research

questions:

RQ1: Does the performance of the IBPSO surpass the

performance of the OBPSO in solving the multi objectives,

constrained NRP?

The aim of this question is to compare the performance of

the adapted IBPSO algorithm and the adapted OBPSO in

solving different sizes of the NRP instances.

RQ2: Does the proposed greedy-random swarm

initialization method improve the performance of the IBPSO

and the OBPSO?

The aim of this question is to assess the ability of the

proposed greedy initialization methodology on guiding the

BPSO to discover better solutions.

RQ3: Is the hybrid greedy-random IBPSO scalable?

The aim of this question is to compare the performance of

the proposed approach over small and large NRP instances.

The rest of the paper is organized as follows: Section II

discusses the previous studies that addressed the NRP.

Section III describes the multi-objective constrained NRP.

Section IV introduces the PSO algorithm. Section V

discusses the proposed approach. While, Section VI

discusses the experimental design and the datasets. Section

VII discusses the experimental results and provides answers

A. A. Mohamed is with the Faculty of Informatics and Computer Science,

British University in Egypt, El-Sherouk City, Egypt (e-mail:

ali.alaa.eldin@outlook.com).

Greedy Binary Particle Swarm Optimization for multi-

Objective Constrained Next Release Problem

A. Hamdy and A. A. Mohamed

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

561doi: 10.18178/ijmlc.2019.9.5.840

mailto:abeer.hamdy@bue.edu.eg
mailto:ali.alaa.eldin@outlook.com

to the research questions. Finally, Section VIII concludes the

paper and suggests further extensions to this work.

II. RELATED WORK

NRP was proved to be NP-complete [17]; so several

research studies have been conducted to solve the NRP or to

prioritize the requirements using metaheuristic algorithms

[4]. Bagnall et al. [3] compared greedy randomized adaptive

search procedure (GRASP), hill climber and simulated

annealing (SA) algorithms in solving different sizes of the

NRP; and they found that the SA outperformed both the

GRASP and the hill climber especially with large scale NRP

instances. Glauber et al. [5] investigated solving the large

scale NRP using two metaheuristic algorithms, the ant colony

optimization (ACO) and the particle swarm optimization

(PSO). The researchers aimed to identify which

metaheuristic algorithm is more suitable for handling the

large scale NRP. They proved that PSO algorithm achieved

much better performance than ACO and the PSO’s best

results were obtained with the higher number of particles.

Moreover, their experiments showed that ACO can achieve

same performance of PSO for small sizes of the NRP.

However, the work of [3] and [5] did not consider the

interactions among the requirements. Three research studies

considered the interactions among the requirements [4], [11],

[12]. Jose et. al. [4] used differential evolution algorithm [18],

while Sagrado et al. [11] and Souza et al, [12] used ACO

algorithms.

III. MULTI-OBJECTIVE NEXT RELEASE PROBLEM

In this paper the NRP is formulated as follows:

A software product has a set of requirements of size m R=

{r1, r2, …, rm}. Each of these requirements has an associated

cost value ei, which represents the amount of resources or the

development cost/effort needed for this requirement. The

dependency and precedence among these requirements are

represented as a directed acyclic graph, in which there exist

a set of nodes and a set of edges, where each node represents

a requirement and each edge represents a dependency

between the nodes.

Given an edge (rj, ri) in which ri is the child node of the

parent rj; this means that the requirement ri depends on the

requirement rj. In this paper we consider one functional

interdependence among the requirements which is

REQUIRE (ri, rj). This interdependency was selected as it is

the most popular in software projects [19]. A REQUIRE (ri,

rj) interdependency indicates that requirement a ri cannot be

selected to the next release if rj is not selected also or has

been developed in a previous release [4], [11], [12]. But

requirement rj can be included in the next release without ri.

Fig. 1 shows an example to the dependencies among the

requirements and the customers’ requests for certain

requirements. In this example, r2 is in the first level, which

means that r2 is the parent of all the requirements and is

required to be developed first.

Furthermore, there is a set of customers of size k (C1,

C2, …, Ck); each customer has an importance to the company.

Each customer requests a subset of requirements and maybe

more than one customer is interested in the same requirement.

So there will be a value vij associated with each requirement

i and customer j denotes the satisfaction of the customer

when including this requirement in the next release. The cost

of a release is the cost of all the requirements selected to be

developed in the next release. The objective of the NRP is to

determine the subset of requirements that will be included in

the product’s next release, such that the total satisfaction of

the customers is maximized and the release’s development

cost is minimized; furthermore, the cost does not exceed the

company’s budget.

Fig. 1. Requirements precedence and customers request example.

IV. PARTICLE SWARM OPTIMIZATION

PSO is one of the swarm intelligence algorithms that was

designed by Eberhart and Kennedy in 1995 [6-9]. It is

inspired by the social behavior of the bird flocks that

collaboratively work together to reach the point that has the

most resources. The whole flock is called the swarm, and

each bird in the swarm is called a particle. Each particle

represents a solution in the search space and has three

attributes, namely, velocity, position and best explored

position by the particle. The velocity attribute guides the

particle to move to its next position. The particle’s position

is updated every iteration according to the particle’s current

velocity value, the global best position that was found by the

swarm, and the best explored position found by the particle.

The PSO algorithm iterates for a predetermined number of

iterations or until a minimum error value is achieved.

V. PROPOSED BPSO STRATEGIES FOR THE NRP

The proposed strategy starts by initializing the swarm with

solutions to the NRP in the feasible search space, where the

NRP constraints are valid. Then, each particle in the swarm

is evaluated and their positions are updated according to their

velocity vectors. The velocity vectors guide the particles

toward better solutions. These steps are repeated until the

swarm reaches a point where no better solutions are found,

or the iteration count is reached. The following subsections

discuss the formal description of the fitness function used in

evaluating the particles, the particles encoding, the swarm

initialization strategies and the steps of both of the IBPSO

and OBPSO.

A. Multi-Objective Fitness Function Formulation

Assume that 𝑅𝑁𝑅 = {r1, r2, …, rn} is a subset of the set of

requirements R, which are selected to be developed for the

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

562

next release of a software package and they satisfy the

requirements’ precedence constraints. Each of these

requirements ri has an associated cost ei, that represents the

development effort needed for this requirement. Let E = {e1,

e2, …, en} be the set of costs that are associated to the n

requirements. These requirements are enhancements or

extensions to the current software system that are endorsed

by a set of k clients C = {c1, c2, …, ck}. Each client has a

grade of importance for the company that is represented by a

weight. The weights of the set of k clients are denoted by W

= {w1, w2, …, wk}. Each requirement rj has an importance to

the client ci, and this importance is defined by a value vij > 0.

A zero value for vij means that the client ci has not suggested

the requirement rj for the next release. The total satisfaction

sj of a requirement rj is calculated as the weighted sum of its

importance values for all the clients that suggested it, which

is expressed by (1):

𝑠𝑗 = ∑ 𝑣𝑖𝑗 ∗ 𝑤𝑖
𝑘
𝑖=1 (1)

The overall satisfaction produced by the set of

requirements selected for the next release is calculated as the

sum of the satisfactions of this set of requirements 𝑅𝑁𝑅

which is calculated by (2):

𝑆𝑎𝑡𝑖𝑠𝑓(𝑅𝑁𝑅) = ∑ 𝑠𝑗
𝑛
𝑗=1 (2)

The cost of developing 𝑅𝑁𝑅 is calculated as the summation

of the cost of developing all the requirements included in 𝑅𝑁𝑅

which is given by (3):

𝐶𝑜𝑠𝑡(𝑅𝑁𝑅) = ∑ 𝑒𝑗
𝑛
𝑗=1 (3)

The fitness function is formulated in a way to maximize

the global satisfaction and minimize the development cost of

the release which is given by (4):

Particle’s fitness = 0.7
𝑆𝑎𝑡𝑖𝑠𝑓(𝑅𝑁𝑅)

𝑆𝑎𝑡𝑖𝑠𝑓(𝑅)
+ 0.3

Cost(𝑅)

Cost(𝑅𝑁𝑅)
 (4)

Such that: 𝐶𝑜𝑠𝑡(𝑅𝑁𝑅) ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

where, 𝐵𝑢𝑑𝑔𝑒𝑡 is the budget allocated by the company for

developing the release.

B. Solution Encoding

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 xi10

1 0 1 0 0 1 1 1 0 1

Fig. 2. A sample position vector Xi of a particle Pi.

In PSO each particle Pi has a position vector Xi which

represents a solution to the tackled problem. We encoded the

solution as a binary string of size m, Xi = (xi1, xi2, …, xim).

Where each bit xij corresponds to a requirement rj, the bit

value is equal to zero or one. The value of one means that the

requirement rj is selected for the next release, while the value

of zero means that the rj is not selected. Fig. 2 shows a sample

particle of size m=10 in which r1, r3, r6, r7, r8, and r10 are

selected and r2, r4, r5, and r9 are not selected for the next

release. The particle position vector is mutated every

iteration depending on the particle’s velocity vector

according to the BPSO algorithm utilized (the OBPSO or the

IBPSO).

C. Swarm Initialization

The swarm holds a population of solutions to the problem.

The selection of the initial swarm is very important; it

directly affects the quality of the best solution found. In this

paper two strategies were used to initialize the swarm which

are: Random and Greedy-Random strategies.

1) Swarm random initialization

Each particle’s position Xi is randomly initialized within

the feasible search space of the NRP, which must comply to

the following constraints:

1) Requirement precedence relationship.

2) The particle’s cost does not exceed the release’s

allocated budget.

Initialization procedure starts by adding randomly to the

particle a requirement and its precedence requirements. If the

total cost of the requirements included in the particle exceeds

the release budget, this action is undone. This process is

repeated until the particle’s cost is equal to the release’s

budget.

Procedure 1: Random initialization

Input: Xi = (xi1, xi2, …., xim), i ∈ {1, 𝑠𝑤𝑎𝑟𝑚_𝑠𝑖𝑧𝑒}

For each particle’s position vector Xi

- Repeat till all the requirements are included or

 Budget - Cost (Xi) ≤ epsilon

- Generate a random number j ∈ (1, m)

- Set the value of the bit xij to 1

 If precedence constraints of the requirement rj is

 not satisfied,

 Include all rj precedencies in Xi

If Cost (Xi) – budget ≤ epsilon

 Remove rj and its added precedencies

 (Undo latest changes)

2) Swarm greedy-random initialization

Greedy approach is utilized to seed the initial population

with valuable feasible solutions. Valuable solutions are

selected based on the values of the requirements. The value

of a requirement is calculated as the summation of the

satisfactions of this requirement and its precedencies divided

by the summation of its cost and the cost of its precedencies.

Greedy-random Initialization procedure proceeds as follows:

Procedure 2: Greedy-random initialization

Input: 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, …., 𝑥𝑖𝑚), i∈ {1, 𝑠𝑤𝑎𝑟𝑚_𝑠𝑖𝑧𝑒}

1. Calculate the value of each requirement.

2. Arrange the requirements in a descending order based on their values.

3. Split the swarm into three compartments

Initialize the first compartment using greedy as follows:

- For a particle i, add to the particle requirements starting from

the ith most valuable one and add its precedencies.

- Check out the budget constraint after each step.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

563

- Stop when budget - Cost (Xi) ≤ epsilon

Initialize the second compartment using Greedy-Random as follows:

- At random add to the particle one of the five most valuable

requirements and its precedencies

- Include more requirements randomly till the budget – Cost

(Xi) ≤ epsilon

Initialize the third compartment according to the random initialization

procedure

D. Binary Particle Swarm Optimization

PSO was originally developed for continuous valued

spaces but in this work, we use binary encoding for the

particles. Therefore, two binary PSO algorithms were

implemented in this paper that is the original BPSO

developed by Kennedy and Eberhart [8] and the improved

BPSO developed by Mojtaba et al. [16]. The following

subsections introduce the both algorithms.

1) Original BPSO

The original BPSO (OBPSO) differs from the PSO in that

the velocity vector Vi of the ith particle Pi represents the

probabilities of the corresponding bits of the particle’s

position vector Xi to mutate from its current state to another.

For example, if the jth position in the particle’s velocity vector

𝑣𝑖𝑗 equals to 0.40, it means that there is a 40% chance that

𝑥𝑖𝑗 will be equal to “one” and a 60% chance it will be equal

to zero. 𝑣𝑖𝑗 is updated according to (5):

𝑣𝑖𝑗(𝑘 + 1) = 𝑤 ∙ 𝑣𝑖𝑗(𝑘) + 𝑐1𝑟1 (𝑋𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗(𝑘)) +

 𝑐2𝑟2 (𝑋𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗(𝑘)) (5)

where, 𝑐1 and 𝑐2 are two parameters representing the

particle’s confidence in itself (local behavior) and in the

swarm (social behavior) respectively. The values of these

two parameters are very important as they control the balance

between exploration and inclinations. Higher values of

𝑐1 encourage the particles to move toward their local best

positions, while higher values of 𝑐2 cause faster convergence

to the global best position.

𝑟1 and 𝑟2 are two random numbers uniformly distributed in

the range (0, 1), while, w is the inertia weight. An upper

bound Vmax was set to the components of the velocity vector.

Vmax and w maintain the balance between the local and the

global search [8], [9]. 𝑋𝑏𝑒𝑠𝑡𝑖 and 𝑋𝑔𝑏𝑒𝑠𝑡 are the best

positions experienced so far by the ith particle and the whole

swarm, respectively.

In order to keep 𝑣𝑖𝑗 in the range (0, 1), a sigmoid

transformation function is applied as given by (6):

𝑉𝑖𝑗
′ = 𝑠𝑖𝑔(𝑉𝑖𝑗

) =
1

1 + 𝑒
−𝑉𝑖𝑗

 (6)

The jth position of the ith particle is updated according to

(7):

𝑥𝑖𝑗(𝑡 + 1) = {
1  , if 𝑟𝑖𝑗 < 𝑠𝑖𝑔 (𝑣𝑖𝑗(𝑡 + 1))

0  , otherwise
 (7)

where, 𝑟𝑖𝑗 is a random uniform number in the range (0, 1).

The algorithm of the OBPSO to solve NRP can be

summarized as follows:

Procedure 3: OBPSO for NRP

1. Initialize the BPSO swarm using either Random or Greedy –

Random strategies.

2. For each particle i do the following:

- Compute the fitness of the particle using its current

position vector F(𝑋𝑖)

- If the particle’s current fitness is higher than its best

experienced position, (F (𝑋𝑖) > F (𝑋𝑏𝑒𝑠𝑡𝑖)), then replace

the particle’s best position with the current position

(𝑋𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖).

- If particle’s best position is better than the global best

position (F (𝑋𝑏𝑒𝑠𝑡𝑖) > F (𝑋𝑔𝑏𝑒𝑠𝑡)), then replace the

global best position with this particle’s best-position

(𝑋𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑏𝑒𝑠𝑡𝑖).

- Update the particle’s velocity vector Vi according to (5)

and (6).

- Update the particle’s position vector Xi according to (7).

- If the particle is not in the feasible search space, mutate

the particle to meet the precedencies and the budget

constraints.

3. Go to step 2 and repeat until convergence or for a predetermined

number of iterations.

2) Improved BPSO

The improved BPSO (IBPSO) defines two more velocity

vectors for each particle 𝑉𝑖
0 , 𝑉𝑖

1 . Where, 𝑉𝑖
0 , 𝑉𝑖

1 are the

probabilities of the bits of the particle’s position vector to

change to 0, or to change to 1, respectively. 𝑉𝑖
0 𝑎𝑛𝑑 𝑉𝑖

1 are

not complement. The velocity vector of the particle 𝑉𝑖
𝑐 is

defined by (8):

𝑉𝑖𝑗
𝑐 = {

 𝑉𝑖𝑗
 1   , 𝑖𝑓 𝑥𝑖𝑗 = 0

 𝑉𝑖𝑗
 0   , 𝑖𝑓 𝑥𝑖𝑗 = 1

    (8)

where, 𝑉𝑖𝑗
𝑐 is the probability of change in the jth bit of the ith

particle position vector Xi.

The vectors 𝑉𝑖
0 , 𝑉𝑖

1 are updated according to the particle’s

best position (𝑋𝑏𝑒𝑠𝑡𝑖) and the global best position (𝑋𝑔𝑏𝑒𝑠𝑡)

vectors. Such that if the jth bit in 𝑋𝑔𝑏𝑒𝑠𝑡 or 𝑋𝑏𝑒𝑠𝑡𝑖 is equal

to zero the velocity 𝑉𝑖𝑗
0 is increased and the probability of

changing to one 𝑉𝑖𝑗
1 is decreased with the same rate. Similarly,

if the jth bit in 𝑋𝑔𝑏𝑒𝑠𝑡 or 𝑋𝑏𝑒𝑠𝑡𝑖 is equal to one 𝑉𝑖𝑗
1 is

increased and 𝑉𝑖𝑗
0 is decreased. The advantage of the IBPSO

over the OBPSO is that the bits of the particle’s position

vector benefit from the previously found direction of change

to one or to zero. Equations 9 and 10 show the calculation of

the jth bit of the velocity vectors V𝑖
 1 and V𝑖

 0.

 𝑉𝑖𝑗
 1 = 𝑤 ∙ 𝑉𝑖𝑗

 1 + 𝑑𝑖𝑗,1
1 + 𝑑𝑖𝑗,2

1 (9)

 𝑉𝑖𝑗
 0 = 𝑤 ∙ 𝑉𝑖𝑗

 0 + 𝑑𝑖𝑗,1
0 + 𝑑𝑖𝑗,2

0 (10)

where, w is the inertia weight and the values of 𝑑𝑖𝑗 ,1
0 , 𝑑𝑖𝑗 ,1

1 ,

𝑑𝑖𝑗 ,2
0 ,and 𝑑𝑖𝑗 ,2

1 are calculated according to (11), (12), (13)

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

564

and (14):

if 𝑥best𝑖
𝑗

= 1 Then 𝑑𝑖𝑗 ,1
1 = 𝑐1𝑟1 and 𝑑𝑖𝑗 ,1

0 = −𝑐1𝑟1 (11)

if 𝑥best𝑖
𝑗

= 0 Then 𝑑𝑖𝑗 ,1
0 = 𝑐1𝑟1 and 𝑑𝑖𝑗 ,1

1 = −𝑐1𝑟1 (12)

if 𝑥𝑔best
𝑗

= 1 Then 𝑑𝑖𝑗 ,2
1 = 𝑐2𝑟2 and 𝑑𝑖𝑗 ,2

0 = −𝑐1𝑟1 (13)

if 𝑥𝑔best
𝑗

= 0 Then 𝑑𝑖𝑗 ,2
0 = 𝑐2𝑟2 and 𝑑𝑖𝑗 ,2

1 = −𝑐1𝑟1 (14)

where, r1 and r2 are two random numbers in the range (0,1).

c1 and c2 are defined parameters.

The velocity vector 𝑉𝑖
𝑐 is calculated and normalized using

the sigmoid function defined by (6); then the particle position

vector is updated according to (15):

𝑥𝑖𝑗(𝑡 + 1) = {
 𝑥𝑖𝑗  , 𝑖𝑓 𝑟𝑖𝑗 < 𝑆𝑖𝑔 (𝑉𝑖𝑗

𝑐)

 𝑥𝑖𝑗  , 𝑖𝑓 𝑟𝑖𝑗 > 𝑆𝑖𝑔 (𝑉𝑖𝑗
𝑐)

 (15)

where, 𝑟𝑖𝑗 is a random uniform number in the range (0, 1).

Equation 15 implies that if 𝑟𝑖𝑗 is less than the current velocity,

then the current position bit is changed to the 2nd complement

of itself; that is, if 𝑥𝑖𝑗 is 0 then 𝑥𝑖𝑗 is 1 or vice versa. On the

other hand, if 𝑟𝑖𝑗 is greater than the current velocity, then the

current position bit remains the same. The algorithm of

IBPSO proceeds similarly to the OBPSO except the approach

of calculating the position and the velocity vectors.

VI. EXPERIMENTAL METHODOLOGY

All the experiments conducted in this paper have been run

under the same environment. On the hardware side, we used

Intel(R) Core(TM) i5-6402P CPU @ 2.80GHz (4CPUs),

~2.8GHz, Memory: 8192MB RAM. On the software side we

used Operating System: Windows 10 Pro 64-bit (10.0, Build

17134). As the BPSO is a stochastic algorithm, 25

independent runs have been carried out for each experiment.

The results provided in the paper are the arithmetic mean of

the results of these independent runs. The arithmetic mean is

a valid statistical measurement because the results follow a

normal distribution.

Two NRP datasets were used in the experiments to assess

the proposed approach. Furthermore, the budget of the

release (total development effort of the release) was restricted

to three limits 30%, 50%, and 70% of the total development

effort 𝐶𝑜𝑠𝑡(𝑅) for each dataset. So, it could be said that 6

instances of an NRP were utilized in assessing the proposed

approach. The datasets are copied from [4], [11], and [20].

The first dataset comprises 30 requirements and 5 clients.

Table I shows the development effort/cost of each

requirement, the priority level assigned to each requirement

by each client, and the requirement interactions. Priority

levels take values from 1 to 5: Value “1”: means not

important requirement, value “2”: minor requirement, value

“3”: important requirement, value “4”: highly important

requirement, and value “5”: tremendously important. These

priority levels were used in measuring the total satisfaction

of a requirement. The development effort of each

requirement is defined on a scale from 1 to 10. It should be

pointed out that this dataset is not large however we used it

to assess the effectiveness of the proposed approach over

small-scale NRP. The second dataset is more complex than

the first one. It comprises 100 requirements, 5 clients and

forty four requirement interactions. Table II lists the

development effort of each requirement, the priority level

assigned to each requirement by each client, and the

interactions. In dataset#2, the development costs of the

requirements are taken from real agile software projects. The

development effort of a requirement is established in 20

effort units, which can be translated into 4 weeks. The values

of the priority levels in this dataset are between one and three,

as the clients prefer to use a coarse-grained scale to indicate

the benefit of the inclusion of a requirement. The value ‘one’

indicates inessential, ‘two’ indicates desirable and ‘three’

indicates mandatory [21], [22]. Furthermore, for the two

datasets, each client is assigned a relative importance in the

decision making of the company. A client’s importance in the

two datasets has values in the range of 1 to 5, where value of

‘1’ means the less important client, while value of ‘5’ means

the most important client. Table III shows the clients’ relative

importance for both datasets.

Fig. 3. The convergence curves of the OBPSO and IBPSO over dataset1 and dataset2.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

565

The experiments were designed to answer the previously

stated three research questions. The setup of the experiments

is listed in Table IV.

VII. RESULTS AND DISCUSSION

This section This section discusses the results of the

experiments and provides answers to the research questions.

Tables V, VI and VII list the mean results of the experiments,

while Fig. 3 shows the average convergence curves of the

experiments over the six NRP instances.

As observed from Table V, the IBPSO algorithm surpasses

the OBPSO in solving the NRP across the six NRP instances.

It could be observed also that the proposed greedy random

initialization algorithm enhanced the performance of the

IBPSO especially across the difficult NRP instances (the two

instances with budget limit 30% of the total effort), while it

improved the performance of the OBPSO across two

instances of the NRP. However, as observed from Table VI,

the greedy random initiation boosted the robustness of both

the OBPSO and the IBPSO over the small and the large

datasets. The robustness of the evolutionary algorithms is

measured using the standard deviation. The smaller the

standard deviation, the more robust the algorithm. Small

standard deviation means that the algorithm is capable of

finding acceptable solutions in the different runs, with small

discrepancy.

We also analysed the execution time required by the

algorithms to find the best solution. The execution time

values are listed in Table VII, which shows the average

execution time in seconds. As observed, the running time of

the IBPSO, to find the best solution, is smaller than the

OBPSO. Furthermore, the greedy random initialization

assisted the IBPSO to converge faster to the best solution,

while it did not benefit the OBPSO.

VIII. CONCLUSIONS AND FUTURE WORK

An improved approach for BPSO was adapted to solve the

constrained multi-objective NRP taking into considerations

the dependency relations among the requirements. Moreover,

the original BPSO algorithm was adapted to solve the same

problem. The two algorithms were assessed using three NRP

instances of a small dataset and three NRP instances of a

large dataset.

It was found that the IBPSO surpasses the OBPSO and not

only that but also its execution time was extremely faster than

the OBPSO.

It was found that the greedy random initialization speeded

up the search for the best solution in the case of utilizing the

IBPSO, while its influence on the BPSO was minimal.

As a further extension to this work, the IBPSO approach

could be extended to find the Pareto front instead of a

particular best solution. Also, the performance of the IBPSO

could be compared with other recent computational

intelligence techniques like the bat and cuckoo search

algorithms.

APPENDIX

TABLE I: DATASET1: REQUIREMENTS DEVELOPMENT COST, DEPENDENCIES AND IMPORTANCE (PRIORITY) FOR EACH CUSTOMER

Effort r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

 1 4 2 3 4 7 10 2 1 3 2 5 8 2 1 4 10 4 8 4

Priority

Level

c1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2

c2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1

c3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2

c4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2

c5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1

Interactions

Requirement → Dependencies

r4 → r8, r17

r8 → r17

r9 → r6, r12, r19

r11 → r19

TABLE II: DATASET2: REQUIREMENTS DEVELOPMENT COST, DEPENDENCIES AND IMPORTANCE (PRIORITY) FOR EACH CUSTOMER

Effort r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

 16 19 16 7 19 15 8 10 6 18 15 12 16 20 9 4 16 2 9 3

Priority

Level

c1 1 2 1 1 2 3 3 1 1 3 1 1 3 2 3 2 2 3 1 3

c2 3 2 1 2 1 2 1 2 2 1 2 3 3 2 1 3 2 3 3 1

c3 1 1 1 2 1 1 1 3 2 2 3 3 3 1 3 1 2 2 3 3

c4 3 2 2 1 3 1 3 2 3 2 3 2 1 3 2 3 2 1 3 3

c5 1 2 3 1 3 1 2 3 1 1 2 2 3 1 2 1 1 1 1 3

Effort r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

 2 10 4 2 7 15 8 20 9 11 5 1 17 6 2 16 8 12 18 5

Priority

Level

c1 2 1 1 1 3 3 3 3 1 2 2 3 2 1 2 2 1 3 3 2

c2 3 3 3 2 3 1 2 2 3 3 1 3 2 2 1 2 3 2 3 3

c3 2 1 2 3 2 3 3 1 3 3 3 2 1 2 2 1 1 3 1 2

c4 1 1 1 2 3 3 2 1 1 1 1 2 2 2 3 2 2 3 1 1

c5 1 1 3 3 3 2 2 3 2 3 1 1 3 3 2 2 1 1 2 1

Effort r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60

 6 14 15 20 14 9 16 6 6 6 6 2 17 8 1 3 14 16 18 7

Priority

Level

c1 2 2 3 1 1 1 2 2 3 3 3 3 1 3 2 1 3 1 3 1

c2 3 3 1 1 3 2 2 2 1 3 3 3 1 2 2 3 3 2 1 1

c3 1 3 1 3 3 3 3 1 3 2 3 1 2 3 2 3 2 1 2 3

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

566

c4 3 1 1 3 1 2 1 1 3 2 2 1 3 2 1 3 3 1 2 3

c5 3 1 1 2 1 2 3 3 2 2 1 3 3 2 3 1 2 1 3 2

Effort r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77 r78 r79 r80

 10 7 16 19 17 15 11 8 20 1 5 8 3 15 4 20 10 20 3 20

Priority

Level

c1 2 2 3 3 1 3 1 3 2 3 1 3 2 3 1 1 2 3 3 1

c2 1 3 2 3 1 2 1 2 3 1 1 3 1 3 2 1 3 3 1 2

c3 1 1 2 3 3 1 3 3 3 1 3 1 3 1 1 2 3 3 1 2

c4 2 2 3 3 3 1 2 1 2 1 2 3 3 2 2 2 1 3 3 1

c5 2 2 1 2 1 3 2 1 2 1 2 2 3 2 1 3 2 3 1 3

Effort r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97 r98 r99 r100

 10 16 19 3 12 16 15 1 6 7 15 18 4 7 2 7 8 7 7 3

Priority

Level

c1 2 1 3 1 2 2 2 1 3 2 2 3 1 1 1 2 1 3 1 1

c2 1 2 1 2 2 1 3 2 2 2 3 2 2 3 2 2 1 3 1 1

c3 1 2 3 2 3 1 2 2 3 3 3 3 2 1 1 2 3 3 2 3

c4 3 1 2 2 2 1 1 1 3 1 1 3 3 1 2 1 2 3 1 3

c5 3 2 1 2 2 2 2 1 3 3 3 1 1 3 1 3 3 3 3 3

Interactions

Requirement → Dependencies Requirement → Dependencies Requirement → Dependencies

r2 → r24 r17 → r43 r40 → r64

r3 → r26, r27, r28, r29 r29 → r49, r50, r51 r43 → r65

r4 → r5 r30 → r52, r53 r46 → r68

r6 → r7 r31 → r55 r47 → r70

r7 → r30 r32 → r56, r57 r55 → r79

r10 → r32, r33 r33 → r58 r56 → r80

r14 → r32, r34, r37, r38 r36 → r61 r57 → r80

r16 → r39, r40 r39 → r63 r62 → r83, 84

r64 → r87

TABLE III: CUSTOMERS’ RELATIVE IMPORTANCE

 c1 c2 c3 c4 c5

Dataset 1 1 4 2 3 4

Dataset 2 1 5 3 3 1

TABLE IV: EXPERIMENTAL SETUP

BPSO parameter

settings

w = 0.8, c1 = 1.5, c2 = 1.5,Vmax =4,Vmin =-4
Swarm size = 15, # of iterations = 15 (for dataset1)

Swarm size = 30, # of iterations = 30 (for dataset2)

Experiment ID BPSO version Initialization

1 Original BPSO (OBPSO) Random
2 Greedy-Random

3 Improved BPSO (IBPSO) Random

4 Greedy-Random

TABLE V: BEST SOLUTION AVERAGE FITNESS, 𝐒𝐚𝐭𝐢𝐬𝐟(𝐑𝐍𝐑) AND 𝐂𝐨𝐬𝐭(𝐑𝐍𝐑) OVER DATASET1 AND DATASET2

 Budget

limit

OBPSO IBPSO

Random Greedy-Random Random Greedy-Random

Fit. S Cost Fit. S Cost Fit S Cost Fit. S Cost

Dataset 1 30% 3.90 162.91 7.75 3.60 179.08 7.83 4.74 138.25 6.83 11.76 101.75 2.83
50% 2.68 193.33 11.08 2.15 247 13.5 2.82 221.91 9.91 6.17 184.25 6.75

70% 2.32 236.41 12.75 2.17 280.25 14.58 2.49 207.91 11.41 3.48 215.66 11.16

Dataset 2 30% 1.52 846.83 239.66 1.52 892.25 241 1.62 715.33 217.66 4.67 367.92 77.16

50% 1.16 1095.83 357.66 1.17 1074.5 351.08 1.25 1005.33 315 1.91 723.25 186.66
70% 1.17 1021.91 350.16 1.19 994.83 337.83 1.27 977.41 308.33 1.47 920.16 256.41

TABLE VI: MEAN FITNESS AND STANDARD DEVIATION OF THE BEST GLOBAL SOLUTION OVER DATASET1 AND DATASET2

Effort

limit

OBPSO IBPSO

Random Greedy Random Greedy

Mean SD Mean SD Mean SD Mean SD

Dataset 1

30% 3.90 1.5847 3.60 0.8615 4.74 6.9645 11.76 2.9889
50% 2.68 0.8148 2.15 0.3691 2.82 6.3995 6.17 0.4919

70% 2.32 0.6735 2.17 0.6327 2.49 3.0620 3.48 0.6064

Dataset 2
30% 1.52 0.0706 1.52 0.0592 1.61 1.8729 4.67 0.0435

50% 1.16 0.0405 1.17 0.0400 1.25 0.3209 1.91 0.0340

70% 1.16 0.0665 1.19 0.0854 1.27 0.1352 1.47 0.0697

TABLE VII: AVERAGE EXECUTION TIME (SEC) OF THE ALGORITHMS OVER DATASET1 AND DATASET2

 Budget limit OBPSO IBPSO

Random Greedy Random Greedy

Dataset1 30% 2.32 2.21 0.46 0.56

50% 2.38 2.29 0.68 0.52

70% 2.43 2.40 0.79 0.62

Dataset2 30% 278.74 279.53 76.99 50.26
50% 292.69 297.61 130.13 58.93

70% 307.35 306.70 140.05 61.98

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

567

REFERENCES

[1] K. Schwaber and M. Beedle, Agile Software Development with Scrum,

Prentice Hall, 2001.

[2] R. Fuchshuber and M. de O. Barros, “Improving heuristics for the next
release problem through landscape visualization,” Lecture Notes in

Computer Science, Springer, vol. 8636, pp. 222-227, 2014.

[3] A. J. Bagnall, V. J. Rayward-Smith, and I. Whittley, “The next release
problem,” Information and Software Technology, vol. 43, no. 14, pp.

883–890, 2001.

[4] B. Glauber, R. Arthur, B. Andre, and S. Leila, “Investigating
bioinspired strategies to solve large scale next release problem,” in

Proc. 18th Ibero American Conference on Software Engineering, Lima,
Peru, April 22-24, 2015.

[5] J. M. Chaves-González and M. A. Pérez-Toledano, “Differential

evolution with Pareto tournament for the multi-objective next release
problem,” Applied Mathematics and Computation, vol. 252, pp. 1–13,

2015.

[6] R. Eberhart and J. Kennedy, “A new optimizer using particles swarm

theory,” in Proc. Sixth International Symposium on Micro Machine

and Human Science, Nagoya, Japan, 1995, pp. 39-43.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE International Conference on Neural Networks, Perth, Australia,

1995, pp. 1942-1948.

[8] J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 2001.

[9] A. P. Engelbrecht, Fundamentals of Computational Swarm

Intelligence, Wiley, 2005.
[10] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press,

Cambridge, 2004.

[11] J. del Sagrado, I. M. del Águila, and F. J. Orellana, “Multi-objective
ant colony optimization for requirements selection,” Journal of

Empirical Software Engineering, vol. 20, issue 3, pp. 577–610, June

2015.
[12] J. T. Souza, C. L. B. Maia, T. N. Ferreira, R. A. F. do Carmo, and M.

M. A. Brasil, “An ant colony optimization approach to the software

release planning with dependent requirements,” in Proc. the 3th Int.
Symposium on Search Based Software Engineering, 2011, pp. 142–157.

[13] D. Goldberg, Genetic Algorithms in Search Optimizationand Machine

Learning, Addison-Wesley Publishing, 1989.

[14] A. Hamdy, “Genetic fuzzy system for enhancing software estimation

models,” International Journal of Modeling and Optimization, vol. 4,

no. 3, June 2014
[15] A. A. Araújo, M. Paixao, I. Yeltsio, A. Dantas, and J. Souza, “An

Architecture based on interactive optimization and machine learning

applied to the next release problem,” Automated Software Engineering,
Springer, vol. 24, issue 3, pp. 623-671, September 2017.

[16] A. K. Mojtaba, T. Mohammed, and A. S. Mahdi, “A novel binary

particle swarm optimization,” in Proc. 2007 Mediterranean
Conference on Control and Automation, Athens, 2007.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP Completeness, Freeman, New York, 1990.
[18] K. Price and R. Storn, “Differential evolution – a simple evolution

strategy for fast optimization,” Dr. Dobb’s J., vol. 22, no. 4, pp. 18–

24,1997.
[19] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell et al., “An

industrial survey of requirements interdependencies in software

product release planning,” in Proc. Fifth IEEE International
Symposium on Requirements Engineering, 2001, pp. 84–91.

[20] D. Greer and G. Ruhe, “Software release planning: An evolutionary

and iterative approach,” Information and Software Technology, vol. 46,
no. 4, pp. 243–253, 2004.

[21] E. Simmons, “Requirements triage: What can we learn from a

‘‘medical’’ approach?” IEEE Software, vol. 21, no. 4, pp. 86–88, 2004.

A. Hamdy is an associate professor in the Faculty of
Informatics and Computer Science, the British

University, Egypt. She earned her B.Sc., M.Sc. and

Ph.D degrees in electronics and electrical
communications from the Faculty of Engineering,

Cairo University in 1992, 1998, and 2003

respectively.

Her research focuses on software engineering

and machine learning.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

568

