
 

 

   

 

 

 

 

  

   

 

 

 

  

  

 

  

  

 

 

  

 

  

  

  

 

 

  

 

   

 

  

 
  

  

 

  

 

 

 

    

   

  

    

 

      

 

 

   

  

   

  

 

 

  

  

 

 

 

   

 

  

  

 

  

 

   

  

 

 

 

 

 

  

 

Abstract—Software companies, that adopt agile 

methodologies in the development of a large and complex 

software product, encounter the problem of selecting the subset 

of requirements to be included in the next release of the product. 

This problem is known as the next release problem (NRP). NRP 

is identified as an NP-hard problem as it involves a set of 

conflicting objectives that need to be addressed. These 

objectives are as follows: (1) maximizing the customer 

satisfaction taking into consideration that each customer has an 

importance level to the company, and (2) minimizing the 

development cost such that it does not exceed the allocated 

budget. Furthermore, the requirements have dependency and 

precedence relationships, and each requirement has a priority 

for each customer according to the customer’s needs. Therefore, 

metaheuristic algorithms are good candidate for tackling this 

problem. This paper proposes a hybrid approach to address the

multi-objective constrained NRP. The proposed approach is 

based on adapting an improved binary particle swarm 

optimization (IBPSO) algorithm. Additionally, a greedy 

methodology was utilized for swarm initialization to seed the 

swarm with good solutions. Experimental results, of over six 

small and large NRP instances, demonstrated that the proposed 

approach converges much faster to solutions better than the 

ones discovered by the original binary PSO. 

Index Terms—Next release problem, binary PSO, swarm 

intelligence, requirements engineering.

I. INTRODUCTION

During the last decade agile methodologies [1] have 

gained a substantial popularity among software development 

companies. In these methodologies, the software product is

developed through releases that have to be produced within 

iterative cycles. Each release includes a new subset of the 

requirements that should meet the needs of the customers and 

should be developed within the allocated budget for each

iteration [2]. The following constraints must be taken into 

consideration: (1) The customers have different importance 

levels to the company, (2) the precedence and dependency 

relationships among the requirements such that some 

requirements cannot be developed before others, (3) each 

requirement has a development cost and (4) requirements 

have different priority levels to the different customers. This 

problem is known in the literature as the next release problem 

(NRP) [3], [4]. 

The larger the set of requirements, the more complex the 

NRP gets; due to the huge number of possible combinations 
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that can be formed by all the features. In addition to 

considering the aforementioned constraints, this context 

leaves the decision maker with 2𝑛 possible combinations to 

decide from. This is why the NRP is considered one of the 

complex combinatorial optimization problems [3]. 

Maximizing the total satisfaction of the customers, and 

minimizing the company’s development cost/effort, are two

conflicting objectives that categorize the NRP as a multi-

objective optimization problem which is best tackled by 

metaheuristic algorithms [4]. Some researchers tackled the 

NRP problem using PSO [5]-[9], ant colony optimization 

(ACO) [5], [10]-[12], genetic algorithms (GA) [5], [16], [13]-

[15]. Some previous research proved that the original BPSO 

(OBPSO) surpasses both of the ant colony and the GA [3] in 

solving the NRP, especially the large scale NRP.

This paper proposes a solution to the constrained multi-

objective NRP using a hybrid approach that adapts an 

improved version of the BPSO (IBPSO) [16] and a greedy 

methodology for the swarm initialization. 

A. Research Questions

The paper aims at answering the following research 

questions:

RQ1: Does the performance of the IBPSO surpass the 

performance of the OBPSO in solving the multi objectives,

constrained NRP?

The aim of this question is to compare the performance of 

the adapted IBPSO algorithm and the adapted OBPSO in 

solving different sizes of the NRP instances.

RQ2: Does the proposed greedy-random swarm 

initialization method improve the performance of the IBPSO

and the OBPSO?

The aim of this question is to assess the ability of the 

proposed greedy initialization methodology on guiding the 

BPSO to discover better solutions.  

RQ3: Is the hybrid greedy-random IBPSO scalable?

The aim of this question is to compare the performance of 

the proposed approach over small and large NRP instances.

The rest of the paper is organized as follows: Section II

discusses the previous studies that addressed the NRP.

Section III describes the multi-objective constrained NRP.

Section IV introduces the PSO algorithm. Section V 

discusses the proposed approach. While, Section VI 

discusses the experimental design and the datasets. Section 

VII discusses the experimental results and provides answers 

A. A. Mohamed is with the Faculty of Informatics and Computer Science, 
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to the research questions. Finally, Section VIII concludes the 

paper and suggests further extensions to this work. 

 

II.  RELATED WORK 

NRP was proved to be NP-complete [17]; so several 

research studies have been conducted to solve the NRP or to 

prioritize the requirements using metaheuristic algorithms 

[4]. Bagnall et al. [3] compared greedy randomized adaptive 

search procedure (GRASP), hill climber and simulated 

annealing (SA) algorithms in solving different sizes of the 

NRP; and they found that the SA outperformed both the 

GRASP and the hill climber especially with large scale NRP 

instances. Glauber et al. [5] investigated solving the large 

scale NRP using two metaheuristic algorithms, the ant colony 

optimization (ACO) and the particle swarm optimization 

(PSO). The researchers aimed to identify which 

metaheuristic algorithm is more suitable for handling the 

large scale NRP. They proved that PSO algorithm achieved 

much better performance than ACO and the PSO’s best 

results were obtained with the higher number of particles. 

Moreover, their experiments showed that ACO can achieve 

same performance of PSO for small sizes of the NRP. 

However, the work of [3] and [5] did not consider the 

interactions among the requirements. Three research studies 

considered the interactions among the requirements [4], [11], 

[12]. Jose et. al. [4] used differential evolution algorithm [18], 

while Sagrado et al. [11] and Souza et al, [12] used ACO 

algorithms. 

 

III.    MULTI-OBJECTIVE NEXT RELEASE PROBLEM 

In this paper the NRP is formulated as follows: 

A software product has a set of requirements of size m R= 

{r1, r2, …, rm}. Each of these requirements has an associated 

cost value ei, which represents the amount of resources or the 

development cost/effort needed for this requirement. The 

dependency and precedence among these requirements are 

represented as a directed acyclic graph, in which there exist 

a set of nodes and a set of edges, where each node represents 

a requirement and each edge represents a dependency 

between the nodes.  

Given an edge (rj, ri) in which ri is the child node of the 

parent rj; this means that the requirement ri depends on the 

requirement rj. In this paper we consider one functional 

interdependence among the requirements which is 

REQUIRE (ri, rj). This interdependency was selected as it is 

the most popular in software projects [19]. A REQUIRE (ri, 

rj) interdependency indicates that requirement a ri cannot be 

selected to the next release if rj is not selected also or has 

been developed in a previous release [4], [11], [12]. But 

requirement rj can be included in the next release without ri. 

Fig. 1 shows an example to the dependencies among the 

requirements and the customers’ requests for certain 

requirements. In this example, r2 is in the first level, which 

means that r2 is the parent of all the requirements and is 

required to be developed first.  

Furthermore, there is a set of customers of size k (C1, 

C2, …, Ck); each customer has an importance to the company. 

Each customer requests a subset of requirements and maybe 

more than one customer is interested in the same requirement. 

So there will be a value vij associated with each requirement 

i and customer j denotes the satisfaction of the customer 

when including this requirement in the next release.  The cost 

of a release is the cost of all the requirements selected to be 

developed in the next release.  The objective of the NRP is to 

determine the subset of requirements that will be included in 

the product’s next release, such that the total satisfaction of 

the customers is maximized and the release’s development 

cost is minimized; furthermore, the cost does not exceed the 

company’s budget. 

 

 
Fig. 1. Requirements precedence and customers request example. 

 

IV.    PARTICLE SWARM OPTIMIZATION 

PSO is one of the swarm intelligence algorithms that was 

designed by Eberhart and Kennedy in 1995 [6-9]. It is 

inspired by the social behavior of the bird flocks that 

collaboratively work together to reach the point that has the 

most resources. The whole flock is called the swarm, and 

each bird in the swarm is called a particle. Each particle 

represents a solution in the search space and has three 

attributes, namely, velocity, position and best explored 

position by the particle. The velocity attribute guides the 

particle to move to its next position. The particle’s position 

is updated every iteration according to the particle’s current 

velocity value, the global best position that was found by the 

swarm, and the best explored position found by the particle. 

The PSO algorithm iterates for a predetermined number of 

iterations or until a minimum error value is achieved. 

 

V.   PROPOSED BPSO STRATEGIES FOR THE NRP 

The proposed strategy starts by initializing the swarm with 

solutions to the NRP in the feasible search space, where the 

NRP constraints are valid. Then, each particle in the swarm 

is evaluated and their positions are updated according to their 

velocity vectors. The velocity vectors guide the particles 

toward better solutions.  These steps are repeated until the 

swarm reaches a point where no better solutions are found, 

or the iteration count is reached. The following subsections 

discuss the formal description of the fitness function used in 

evaluating the particles, the particles encoding, the swarm 

initialization strategies and the steps of both of the IBPSO 

and OBPSO.  

A. Multi-Objective Fitness Function Formulation 

Assume that 𝑅𝑁𝑅 = {r1, r2, …, rn} is a subset of the set of 

requirements R, which are selected to be developed for the 
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next release of a software package and they satisfy the 

requirements’ precedence constraints. Each of these 

requirements ri has an associated cost ei, that represents the 

development effort needed for this requirement. Let E = {e1, 

e2, …, en} be the set of costs that are associated to the n 

requirements. These requirements are enhancements or 

extensions to the current software system that are endorsed 

by a set of k clients C = {c1, c2, …, ck}. Each client has a 

grade of importance for the company that is represented by a 

weight. The weights of the set of k clients are denoted by W 

= {w1, w2, …, wk}. Each requirement rj has an importance to 

the client ci, and this importance is defined by a value vij > 0. 

A zero value for vij means that the client ci has not suggested 

the requirement rj for the next release. The total satisfaction 

sj of a requirement rj is calculated as the weighted sum of its 

importance values for all the clients that suggested it, which 

is expressed by (1): 

 

𝑠𝑗 = ∑ 𝑣𝑖𝑗 ∗ 𝑤𝑖
𝑘
𝑖=1                                  (1) 

 

The overall satisfaction produced by the set of 

requirements selected for the next release is calculated as the 

sum of the satisfactions of this set of requirements 𝑅𝑁𝑅 

which is calculated by (2): 

 

𝑆𝑎𝑡𝑖𝑠𝑓(𝑅𝑁𝑅) = ∑ 𝑠𝑗
𝑛
𝑗=1                             (2) 

 

The cost of developing 𝑅𝑁𝑅 is calculated as the summation 

of the cost of developing all the requirements included in 𝑅𝑁𝑅 

which is given by (3): 
 

𝐶𝑜𝑠𝑡(𝑅𝑁𝑅) = ∑ 𝑒𝑗
𝑛
𝑗=1                                (3) 

 

The fitness function is formulated in a way to maximize 

the global satisfaction and minimize the development cost of 

the release which is given by (4):  
 

Particle’s fitness = 0.7
𝑆𝑎𝑡𝑖𝑠𝑓(𝑅𝑁𝑅)

𝑆𝑎𝑡𝑖𝑠𝑓(𝑅)
+ 0.3

Cost(𝑅)

Cost(𝑅𝑁𝑅)
         (4) 

 

Such that: 𝐶𝑜𝑠𝑡(𝑅𝑁𝑅) ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 

 

where, 𝐵𝑢𝑑𝑔𝑒𝑡 is the budget allocated by the company for 

developing the release. 

B. Solution Encoding 
 

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 xi10 

1 0 1 0 0 1 1 1 0 1 

Fig. 2. A sample position vector Xi of a particle Pi. 
 

In PSO each particle Pi has a position vector Xi which 

represents a solution to the tackled problem. We encoded the 

solution as a binary string of size m, Xi = (xi1, xi2, …, xim). 

Where each bit xij corresponds to a requirement rj, the bit 

value is equal to zero or one. The value of one means that the 

requirement rj is selected for the next release, while the value 

of zero means that the rj is not selected. Fig. 2 shows a sample 

particle of size m=10 in which r1, r3, r6, r7, r8, and r10 are 

selected and r2, r4, r5, and r9 are not selected for the next 

release. The particle position vector is mutated every 

iteration depending on the particle’s velocity vector 

according to the BPSO algorithm utilized (the OBPSO or the 

IBPSO). 

C. Swarm Initialization 

The swarm holds a population of solutions to the problem. 

The selection of the initial swarm is very important; it 

directly affects the quality of the best solution found. In this 

paper two strategies were used to initialize the swarm which 

are: Random and Greedy-Random strategies.  

1) Swarm random initialization 

Each particle’s position Xi is randomly initialized within 

the feasible search space of the NRP, which must comply to 

the following constraints: 

1) Requirement precedence relationship. 

2) The particle’s cost does not exceed the release’s 

allocated budget. 

Initialization procedure starts by adding randomly to the 

particle a requirement and its precedence requirements. If the 

total cost of the requirements included in the particle exceeds 

the release budget, this action is undone. This process is 

repeated until the particle’s cost is equal to the release’s 

budget. 

 
Procedure 1: Random initialization  

Input: Xi = (xi1, xi2, …., xim), i ∈ {1, 𝑠𝑤𝑎𝑟𝑚_𝑠𝑖𝑧𝑒} 

 

For each particle’s position vector Xi  

- Repeat till all the requirements are included or  

 Budget - Cost (Xi) ≤ epsilon 

- Generate a random number j ∈ (1, m) 

- Set the value of the bit xij to 1  

 If precedence constraints of the requirement rj is  

 not satisfied,  

  Include all rj precedencies in Xi 

If Cost (Xi) – budget ≤ epsilon 

  Remove rj and its added precedencies  

  (Undo latest changes) 

 

2) Swarm greedy-random initialization 

Greedy approach is utilized to seed the initial population 

with valuable feasible solutions. Valuable solutions are 

selected based on the values of the requirements. The value 

of a requirement is calculated as the summation of the 

satisfactions of this requirement and its precedencies divided 

by the summation of its cost and the cost of its precedencies. 

Greedy-random Initialization procedure proceeds as follows: 

 

Procedure 2: Greedy-random initialization  

Input: 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, …., 𝑥𝑖𝑚), i∈ {1, 𝑠𝑤𝑎𝑟𝑚_𝑠𝑖𝑧𝑒} 

 

1. Calculate the value of each requirement. 

2. Arrange the requirements in a descending order based on their values. 

3. Split the swarm into three compartments 

Initialize the first compartment using greedy as follows: 

- For a particle i, add to the particle requirements starting from 

the ith most valuable one and add its precedencies. 

- Check out the budget constraint after each step. 
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- Stop when budget - Cost (Xi) ≤ epsilon 

Initialize the second compartment using Greedy-Random as follows: 

- At random add to the particle one of the five most valuable 

requirements and its precedencies 

- Include more requirements randomly till the budget – Cost 

(Xi) ≤ epsilon 

Initialize the third compartment according to the  random initialization 

procedure  

 

D. Binary Particle Swarm Optimization 

PSO was originally developed for continuous valued 

spaces but in this work, we use binary encoding for the 

particles. Therefore, two binary PSO algorithms were 

implemented in this paper that is the original BPSO 

developed by Kennedy and Eberhart [8] and the improved 

BPSO developed by Mojtaba et al. [16]. The following 

subsections introduce the both algorithms. 

1) Original BPSO  

The original BPSO (OBPSO) differs from the PSO in that 

the velocity vector Vi of the ith particle Pi represents the 

probabilities of the corresponding bits of the particle’s 

position vector Xi to mutate from its current state to another. 

For example, if the jth position in the particle’s velocity vector 

𝑣𝑖𝑗  equals to 0.40, it means that there is a 40% chance that 

𝑥𝑖𝑗  will be equal to “one” and a 60% chance it will be equal 

to zero. 𝑣𝑖𝑗  is updated according to (5): 

 

𝑣𝑖𝑗(𝑘 + 1) = 𝑤 ∙ 𝑣𝑖𝑗(𝑘) + 𝑐1𝑟1 (𝑋𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗(𝑘))  +

 𝑐2𝑟2 (𝑋𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗(𝑘))                                (5) 

 

where, 𝑐1  and 𝑐2  are two parameters representing the 

particle’s confidence in itself (local behavior) and in the 

swarm (social behavior) respectively. The values of these 

two parameters are very important as they control the balance 

between exploration and inclinations. Higher values of 

𝑐1 encourage the particles to move toward their local best 

positions, while higher values of 𝑐2 cause faster convergence 

to the global best position. 

𝑟1 and 𝑟2 are two random numbers uniformly distributed in 

the range (0, 1), while, w is the inertia weight. An upper 

bound Vmax was set to the components of the velocity vector. 

Vmax and w maintain the balance between the local and the 

global search [8], [9]. 𝑋𝑏𝑒𝑠𝑡𝑖  and 𝑋𝑔𝑏𝑒𝑠𝑡  are the best 

positions experienced so far by the ith particle and the whole 

swarm, respectively. 

In order to keep 𝑣𝑖𝑗  in the range (0, 1), a sigmoid 

transformation function is applied as given by (6): 
 

𝑉𝑖𝑗
′ = 𝑠𝑖𝑔(𝑉𝑖𝑗

 )  =  
1

1 + 𝑒
−𝑉𝑖𝑗

                                   (6) 

 

The jth position of the ith particle is updated according to 

(7): 
 

𝑥𝑖𝑗(𝑡 + 1) = {
1  , if 𝑟𝑖𝑗  <  𝑠𝑖𝑔 (𝑣𝑖𝑗(𝑡 + 1))

0  , otherwise                            
               (7) 

 

where, 𝑟𝑖𝑗  is a random uniform number in the range (0, 1). 

The algorithm of the OBPSO to solve NRP can be 

summarized as follows: 

 
Procedure 3: OBPSO for NRP  

1. Initialize the BPSO swarm using either Random or Greedy –

Random strategies. 

2. For each particle i do the following: 

- Compute the fitness of the particle using its current 

position vector F(𝑋𝑖) 

- If the particle’s current fitness is higher than its best 

experienced position, (F (𝑋𝑖) > F (𝑋𝑏𝑒𝑠𝑡𝑖)), then replace 

the particle’s best position with the current position 

(𝑋𝑏𝑒𝑠𝑡𝑖 =  𝑋𝑖). 

- If particle’s best position is better than the global best 

position (F (𝑋𝑏𝑒𝑠𝑡𝑖 ) > F (𝑋𝑔𝑏𝑒𝑠𝑡 )), then replace the 

global best position with this particle’s best-position 

(𝑋𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑏𝑒𝑠𝑡𝑖). 

- Update the particle’s velocity vector Vi according to (5) 

and (6). 

- Update the particle’s position vector Xi according to (7). 

- If the particle is not in the feasible search space, mutate 

the particle to meet the precedencies and the budget 

constraints. 

3. Go to step 2 and repeat until convergence or for a predetermined 

number of iterations. 

2) Improved BPSO 

The improved BPSO (IBPSO) defines two more velocity 

vectors for each particle 𝑉𝑖
0  , 𝑉𝑖

1 . Where, 𝑉𝑖
0 , 𝑉𝑖

1 are the 

probabilities of the bits of the particle’s position vector to 

change to 0, or to change to 1, respectively. 𝑉𝑖
0 𝑎𝑛𝑑 𝑉𝑖

1 are 

not complement. The velocity vector of the particle 𝑉𝑖
𝑐  is 

defined by (8): 

𝑉𝑖𝑗
𝑐 = {

 𝑉𝑖𝑗
 1   , 𝑖𝑓 𝑥𝑖𝑗  = 0

 𝑉𝑖𝑗
 0   , 𝑖𝑓 𝑥𝑖𝑗  = 1

                                       (8) 

where, 𝑉𝑖𝑗
𝑐  is the probability of change in the jth bit of the ith 

particle position vector Xi. 

The vectors 𝑉𝑖
0 , 𝑉𝑖

1 are updated according to the particle’s 

best position (𝑋𝑏𝑒𝑠𝑡𝑖) and the global best position (𝑋𝑔𝑏𝑒𝑠𝑡) 

vectors. Such that if the jth bit in 𝑋𝑔𝑏𝑒𝑠𝑡 or 𝑋𝑏𝑒𝑠𝑡𝑖 is equal 

to zero the velocity 𝑉𝑖𝑗
0  is increased and the probability of 

changing to one 𝑉𝑖𝑗
1 is decreased with the same rate. Similarly, 

if the jth bit in 𝑋𝑔𝑏𝑒𝑠𝑡  or 𝑋𝑏𝑒𝑠𝑡𝑖  is equal to one 𝑉𝑖𝑗
1  is 

increased and 𝑉𝑖𝑗
0 is decreased. The advantage of the IBPSO 

over the OBPSO is that the bits of the particle’s position 

vector benefit from the previously found direction of change 

to one or to zero. Equations 9 and 10 show the calculation of 

the jth bit of the velocity vectors  V𝑖
 1 and  V𝑖

 0. 
 

 𝑉𝑖𝑗
 1 = 𝑤 ∙  𝑉𝑖𝑗

 1 + 𝑑𝑖𝑗,1
1 + 𝑑𝑖𝑗,2

1                            (9) 
 

 𝑉𝑖𝑗
 0 = 𝑤 ∙  𝑉𝑖𝑗

 0 + 𝑑𝑖𝑗,1
0 + 𝑑𝑖𝑗,2

0                          (10) 

 

where, w is the inertia weight and the values of  𝑑𝑖𝑗 ,1
0  , 𝑑𝑖𝑗 ,1

1 , 

𝑑𝑖𝑗 ,2
0 ,and  𝑑𝑖𝑗 ,2

1  are calculated according to (11), (12), (13) 
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and (14): 
 

if 𝑥best𝑖
𝑗

= 1 Then 𝑑𝑖𝑗 ,1
1 = 𝑐1𝑟1 and 𝑑𝑖𝑗 ,1

0 = −𝑐1𝑟1     (11) 
 

if 𝑥best𝑖
𝑗

= 0 Then 𝑑𝑖𝑗 ,1
0 = 𝑐1𝑟1 and 𝑑𝑖𝑗 ,1

1 = −𝑐1𝑟1     (12) 
 

if 𝑥𝑔best
𝑗

= 1 Then 𝑑𝑖𝑗 ,2
1 = 𝑐2𝑟2 and 𝑑𝑖𝑗 ,2

0 = −𝑐1𝑟1   (13) 
 

if 𝑥𝑔best
𝑗

= 0 Then 𝑑𝑖𝑗 ,2
0 = 𝑐2𝑟2 and 𝑑𝑖𝑗 ,2

1 = −𝑐1𝑟1   (14) 
 

where, r1 and r2 are two random numbers in the range (0,1). 

c1 and c2 are defined parameters.  

The velocity vector 𝑉𝑖
𝑐 is calculated and normalized using 

the sigmoid function defined by (6); then the particle position 

vector is updated according to (15): 
 

𝑥𝑖𝑗(𝑡 + 1) = {
 𝑥𝑖𝑗  , 𝑖𝑓 𝑟𝑖𝑗  <  𝑆𝑖𝑔 (𝑉𝑖𝑗

𝑐)

 𝑥𝑖𝑗  , 𝑖𝑓 𝑟𝑖𝑗  >  𝑆𝑖𝑔 (𝑉𝑖𝑗
𝑐 )

            (15) 

 

where, 𝑟𝑖𝑗  is a random uniform number in the range (0, 1). 

Equation 15 implies that if 𝑟𝑖𝑗  is less than the current velocity, 

then the current position bit is changed to the 2nd complement 

of itself;  that is, if  𝑥𝑖𝑗 is 0 then  𝑥𝑖𝑗  is 1 or vice versa. On the 

other hand, if 𝑟𝑖𝑗  is greater than the current velocity, then the 

current position bit remains the same. The algorithm of 

IBPSO proceeds similarly to the OBPSO except the approach 

of calculating the position and the velocity vectors. 

 

VI.    EXPERIMENTAL METHODOLOGY 

All the experiments conducted in this paper have been run 

under the same environment. On the hardware side, we used 

Intel(R) Core(TM) i5-6402P CPU @ 2.80GHz (4CPUs), 

~2.8GHz, Memory: 8192MB RAM. On the software side we 

used Operating System: Windows 10 Pro 64-bit (10.0, Build 

17134). As the BPSO is a stochastic algorithm, 25 

independent runs have been carried out for each experiment. 

The results provided in the paper are the arithmetic mean of 

the results of these independent runs. The arithmetic mean is 

a valid statistical measurement because the results follow a 

normal distribution.  

Two NRP datasets were used in the experiments to assess 

the proposed approach. Furthermore, the budget of the 

release (total development effort of the release) was restricted 

to three limits 30%, 50%, and 70% of the total development 

effort 𝐶𝑜𝑠𝑡(𝑅) for each dataset. So, it could be said that 6 

instances of an NRP were utilized in assessing the proposed 

approach. The datasets are copied from [4], [11], and [20]. 

The first dataset comprises 30 requirements and 5 clients. 

Table I shows the development effort/cost of each 

requirement, the priority level assigned to each requirement 

by each client, and the requirement interactions. Priority 

levels take values from 1 to 5: Value “1”: means not 

important requirement, value “2”: minor requirement, value 

“3”: important requirement, value “4”: highly important 

requirement, and value “5”: tremendously important. These 

priority levels were used in measuring the total satisfaction 

of a requirement. The development effort of each 

requirement is defined on a scale from 1 to 10. It should be 

pointed out that this dataset is not large however we used it 

to assess the effectiveness of the proposed approach over 

small-scale NRP. The second dataset is more complex than 

the first one. It comprises 100 requirements, 5 clients and 

forty four requirement interactions. Table II lists the 

development effort of each requirement, the priority level 

assigned to each requirement by each client, and the 

interactions. In dataset#2, the development costs of the 

requirements are taken from real agile software projects. The 

development effort of a requirement is established in 20 

effort units, which can be translated into 4 weeks. The values 

of the priority levels in this dataset are between one and three, 

as the clients prefer to use a coarse-grained scale to indicate 

the benefit of the inclusion of a requirement. The value ‘one’ 

indicates inessential, ‘two’ indicates desirable and ‘three’ 

indicates mandatory [21], [22]. Furthermore, for the two 

datasets, each client is assigned a relative importance in the 

decision making of the company. A client’s importance in the 

two datasets has values in the range of 1 to 5, where value of 

‘1’ means the less important client, while value of ‘5’ means 

the most important client. Table III shows the clients’ relative 

importance for both datasets. 

 

 

 

 
Fig. 3. The convergence curves of the OBPSO and IBPSO over dataset1 and dataset2. 
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The experiments were designed to answer the previously 

stated three research questions. The setup of the experiments 

is listed in Table IV. 

 

VII.  RESULTS AND DISCUSSION 

This section This section discusses the results of the 

experiments and provides answers to the research questions. 

Tables V, VI and VII list the mean results of the experiments, 

while Fig. 3 shows the average convergence curves of the 

experiments over the six NRP instances. 

As observed from Table V, the IBPSO algorithm surpasses 

the OBPSO in solving the NRP across the six NRP instances. 

It could be observed also that the proposed greedy random 

initialization algorithm enhanced the performance of the 

IBPSO especially across the difficult NRP instances (the two 

instances with budget limit 30% of the total effort), while it 

improved the performance of the OBPSO across two 

instances of the NRP. However, as observed from Table VI, 

the greedy random initiation boosted the robustness of both 

the OBPSO and the IBPSO over the small and the large 

datasets. The robustness of the evolutionary algorithms is 

measured using the standard deviation. The smaller the 

standard deviation, the more robust the algorithm. Small 

standard deviation means that the algorithm is capable of 

finding acceptable solutions in the different runs, with small 

discrepancy. 

We also analysed the execution time required by the 

algorithms to find the best solution. The execution time 

values are listed in Table VII, which shows the average 

execution time in seconds. As observed, the running time of 

the IBPSO, to find the best solution, is smaller than the 

OBPSO. Furthermore, the greedy random initialization 

assisted the IBPSO to converge faster to the best solution, 

while it did not benefit the OBPSO. 

 

VIII.   CONCLUSIONS AND FUTURE WORK 

An improved approach for BPSO was adapted to solve the 

constrained multi-objective NRP taking into considerations 

the dependency relations among the requirements. Moreover, 

the original BPSO algorithm was adapted to solve the same 

problem. The two algorithms were assessed using three NRP 

instances of a small dataset and three NRP instances of a 

large dataset. 

It was found that the IBPSO surpasses the OBPSO and not 

only that but also its execution time was extremely faster than 

the OBPSO. 

It was found that the greedy random initialization speeded 

up the search for the best solution in the case of utilizing the 

IBPSO, while its influence on the BPSO was minimal. 

As a further extension to this work, the IBPSO approach 

could be extended to find the Pareto front instead of a 

particular best solution. Also, the performance of the IBPSO 

could be compared with other recent computational 

intelligence techniques like the bat and cuckoo search 

algorithms. 

APPENDIX 

 
TABLE I: DATASET1: REQUIREMENTS DEVELOPMENT COST, DEPENDENCIES AND IMPORTANCE (PRIORITY) FOR EACH CUSTOMER 

Effort  r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 

  1 4 2 3 4 7 10 2 1 3 2 5 8 2 1 4 10 4 8 4 

Priority 

Level 

c1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2 

c2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1 

c3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2 

c4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2 

c5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1 

Interactions  

Requirement → Dependencies 

r4 → r8, r17 

r8 → r17 

r9 → r6, r12, r19 

r11 → r19 
 

 

TABLE II:  DATASET2: REQUIREMENTS DEVELOPMENT COST, DEPENDENCIES AND IMPORTANCE (PRIORITY) FOR EACH CUSTOMER 

Effort  r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 

  16 19 16 7 19 15 8 10 6 18 15 12 16 20 9 4 16 2 9 3 

Priority 

Level 

c1 1 2 1 1 2 3 3 1 1 3 1 1 3 2 3 2 2 3 1 3 

c2 3 2 1 2 1 2 1 2 2 1 2 3 3 2 1 3 2 3 3 1 

c3 1 1 1 2 1 1 1 3 2 2 3 3 3 1 3 1 2 2 3 3 

c4 3 2 2 1 3 1 3 2 3 2 3 2 1 3 2 3 2 1 3 3 

c5 1 2 3 1 3 1 2 3 1 1 2 2 3 1 2 1 1 1 1 3 

Effort  r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 

  2 10 4 2 7 15 8 20 9 11 5 1 17 6 2 16 8 12 18 5 

Priority 

Level 

c1 2 1 1 1 3 3 3 3 1 2 2 3 2 1 2 2 1 3 3 2 

c2 3 3 3 2 3 1 2 2 3 3 1 3 2 2 1 2 3 2 3 3 

c3 2 1 2 3 2 3 3 1 3 3 3 2 1 2 2 1 1 3 1 2 

c4 1 1 1 2 3 3 2 1 1 1 1 2 2 2 3 2 2 3 1 1 

c5 1 1 3 3 3 2 2 3 2 3 1 1 3 3 2 2 1 1 2 1 

Effort  r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 

  6 14 15 20 14 9 16 6 6 6 6 2 17 8 1 3 14 16 18 7 

Priority 

Level 

c1 2 2 3 1 1 1 2 2 3 3 3 3 1 3 2 1 3 1 3 1 

c2 3 3 1 1 3 2 2 2 1 3 3 3 1 2 2 3 3 2 1 1 

c3 1 3 1 3 3 3 3 1 3 2 3 1 2 3 2 3 2 1 2 3 
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c4 3 1 1 3 1 2 1 1 3 2 2 1 3 2 1 3 3 1 2 3 

c5 3 1 1 2 1 2 3 3 2 2 1 3 3 2 3 1 2 1 3 2 

Effort  r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77 r78 r79 r80 

  10 7 16 19 17 15 11 8 20 1 5 8 3 15 4 20 10 20 3 20 

Priority 

Level 

c1 2 2 3 3 1 3 1 3 2 3 1 3 2 3 1 1 2 3 3 1 

c2 1 3 2 3 1 2 1 2 3 1 1 3 1 3 2 1 3 3 1 2 

c3 1 1 2 3 3 1 3 3 3 1 3 1 3 1 1 2 3 3 1 2 

c4 2 2 3 3 3 1 2 1 2 1 2 3 3 2 2 2 1 3 3 1 

c5 2 2 1 2 1 3 2 1 2 1 2 2 3 2 1 3 2 3 1 3 

Effort  r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97 r98 r99 r100 

  10 16 19 3 12 16 15 1 6 7 15 18 4 7 2 7 8 7 7 3 

Priority 

Level 

c1 2 1 3 1 2 2 2 1 3 2 2 3 1 1 1 2 1 3 1 1 

c2 1 2 1 2 2 1 3 2 2 2 3 2 2 3 2 2 1 3 1 1 

c3 1 2 3 2 3 1 2 2 3 3 3 3 2 1 1 2 3 3 2 3 

c4 3 1 2 2 2 1 1 1 3 1 1 3 3 1 2 1 2 3 1 3 

c5 3 2 1 2 2 2 2 1 3 3 3 1 1 3 1 3 3 3 3 3 

Interactions 

 
 

Requirement → Dependencies  Requirement → Dependencies  Requirement → Dependencies 

r2 → r24  r17 → r43  r40 → r64 

r3 → r26, r27, r28, r29  r29 → r49, r50, r51  r43 → r65 

r4 → r5  r30 → r52, r53  r46 → r68 

r6 → r7  r31 → r55  r47 → r70 

r7 → r30  r32 → r56, r57  r55 → r79 

r10 → r32, r33  r33 → r58  r56 → r80 

r14 → r32, r34, r37, r38  r36 → r61  r57 → r80 

r16 → r39, r40  r39 → r63  r62 → r83, 84 

r64 → r87 
 

 

TABLE III: CUSTOMERS’ RELATIVE IMPORTANCE 

 c1 c2 c3 c4 c5 

Dataset 1 1 4 2 3 4 

Dataset 2 1 5 3 3 1 

 

TABLE IV: EXPERIMENTAL SETUP 

BPSO parameter 

settings 

w = 0.8, c1 = 1.5, c2 = 1.5,Vmax =4,Vmin =-4 
Swarm size = 15, # of iterations = 15 (for dataset1) 

Swarm size = 30, # of iterations = 30 (for dataset2) 

Experiment ID BPSO version Initialization 

1 Original BPSO (OBPSO) Random 
2 Greedy-Random 

3 Improved BPSO (IBPSO) Random 

4 Greedy-Random 

 

TABLE V: BEST SOLUTION AVERAGE FITNESS, 𝐒𝐚𝐭𝐢𝐬𝐟(𝐑𝐍𝐑) AND 𝐂𝐨𝐬𝐭(𝐑𝐍𝐑) OVER DATASET1 AND DATASET2 

 Budget 

limit 

OBPSO IBPSO 

Random Greedy-Random Random Greedy-Random 

Fit. S Cost Fit. S Cost Fit S    Cost Fit. S Cost 

Dataset 1 30% 3.90 162.91 7.75 3.60 179.08 7.83 4.74 138.25 6.83 11.76 101.75 2.83 
50% 2.68 193.33 11.08 2.15 247 13.5 2.82 221.91 9.91 6.17 184.25 6.75 

70% 2.32 236.41 12.75 2.17 280.25 14.58 2.49 207.91 11.41 3.48 215.66 11.16 

Dataset 2 30% 1.52 846.83 239.66 1.52 892.25 241 1.62 715.33 217.66 4.67 367.92 77.16 

50% 1.16 1095.83 357.66 1.17 1074.5 351.08 1.25 1005.33 315 1.91 723.25 186.66 
70% 1.17 1021.91 350.16 1.19 994.83 337.83 1.27 977.41 308.33 1.47 920.16 256.41 

 

TABLE VI: MEAN FITNESS AND STANDARD DEVIATION OF THE BEST GLOBAL SOLUTION OVER DATASET1 AND DATASET2 

 
Effort 

limit 

OBPSO IBPSO 

Random Greedy Random Greedy 

Mean SD Mean SD Mean SD Mean SD 

Dataset 1 

30% 3.90 1.5847 3.60 0.8615 4.74 6.9645 11.76 2.9889 
50% 2.68 0.8148 2.15 0.3691 2.82 6.3995 6.17 0.4919 

70% 2.32 0.6735 2.17 0.6327 2.49 3.0620 3.48 0.6064 

Dataset 2 
30% 1.52 0.0706 1.52 0.0592 1.61 1.8729 4.67 0.0435 

50% 1.16 0.0405 1.17 0.0400 1.25 0.3209 1.91 0.0340 

70% 1.16 0.0665 1.19 0.0854 1.27 0.1352 1.47 0.0697 
 

TABLE VII: AVERAGE EXECUTION TIME (SEC) OF THE ALGORITHMS OVER DATASET1 AND DATASET2 

 Budget limit OBPSO IBPSO 

Random Greedy Random Greedy 

Dataset1 30% 2.32 2.21 0.46 0.56 

50% 2.38 2.29 0.68 0.52 

70% 2.43 2.40 0.79 0.62 

Dataset2 30% 278.74 279.53 76.99 50.26 
50% 292.69 297.61 130.13 58.93 

70% 307.35 306.70 140.05 61.98 
 

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

567



REFERENCES 

[1] K. Schwaber and M. Beedle, Agile Software Development with Scrum, 

Prentice Hall, 2001. 

[2] R. Fuchshuber and M. de O. Barros, “Improving heuristics for the next 
release problem through landscape visualization,” Lecture Notes in 

Computer Science, Springer, vol. 8636, pp. 222-227, 2014. 

[3] A. J. Bagnall, V. J. Rayward-Smith, and I. Whittley, “The next release 
problem,” Information and Software Technology, vol. 43, no. 14, pp. 

883–890, 2001. 

[4] B. Glauber, R. Arthur, B. Andre, and S. Leila, “Investigating 
bioinspired strategies to solve large scale next release problem,” in 

Proc. 18th Ibero American Conference on Software Engineering, Lima, 
Peru, April 22-24, 2015. 

[5] J. M. Chaves-González and M. A. Pérez-Toledano, “Differential 

evolution with Pareto tournament for the multi-objective next release 
problem,” Applied Mathematics and Computation, vol. 252, pp. 1–13, 

2015. 

[6] R. Eberhart and J. Kennedy, “A new optimizer using particles swarm 

theory,” in Proc. Sixth International Symposium on Micro Machine 

and Human Science, Nagoya, Japan, 1995, pp. 39-43. 

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. 
IEEE International Conference on Neural Networks, Perth, Australia, 

1995, pp. 1942-1948. 

[8] J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan Kaufmann 
Publishers, Inc., San Francisco, CA, 2001. 

[9] A. P. Engelbrecht, Fundamentals of Computational Swarm 

Intelligence, Wiley, 2005. 
[10] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, 

Cambridge, 2004. 

[11] J. del Sagrado, I. M. del Águila, and F. J. Orellana, “Multi-objective 
ant colony optimization for requirements selection,” Journal of 

Empirical Software Engineering, vol. 20, issue 3, pp. 577–610, June 

2015. 
[12] J. T. Souza, C. L. B. Maia, T. N. Ferreira, R. A. F. do Carmo, and M. 

M. A. Brasil, “An ant colony optimization approach to the software 

release planning with dependent requirements,” in Proc. the 3th Int. 
Symposium on Search Based Software Engineering, 2011, pp. 142–157. 

[13] D. Goldberg, Genetic Algorithms in Search Optimizationand Machine 

Learning, Addison-Wesley Publishing, 1989. 

[14] A. Hamdy, “Genetic fuzzy system for enhancing software estimation 

models,” International Journal of Modeling and Optimization, vol. 4, 

no. 3, June 2014 
[15] A. A. Araújo, M. Paixao, I. Yeltsio, A. Dantas, and J. Souza, “An 

Architecture based on interactive optimization and machine learning 

applied to the next release problem,” Automated Software Engineering, 
Springer, vol. 24, issue 3, pp. 623-671, September 2017. 

[16] A. K. Mojtaba, T. Mohammed, and A. S. Mahdi, “A novel binary 

particle swarm optimization,” in Proc. 2007 Mediterranean 
Conference on Control and Automation, Athens, 2007.  

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide 

to the Theory of NP Completeness, Freeman, New York, 1990. 
[18] K. Price and R. Storn, “Differential evolution – a simple evolution 

strategy for fast optimization,” Dr. Dobb’s J., vol. 22, no. 4, pp. 18–

24,1997. 
[19] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell et al., “An 

industrial survey of requirements interdependencies in software 

product release planning,” in Proc. Fifth IEEE International 
Symposium on Requirements Engineering, 2001, pp. 84–91.  

[20] D. Greer and G. Ruhe, “Software release planning: An evolutionary 

and iterative approach,” Information and Software Technology, vol. 46, 
no. 4, pp. 243–253, 2004.  

[21] E. Simmons, “Requirements triage: What can we learn from a 

‘‘medical’’ approach?” IEEE Software, vol. 21, no. 4, pp. 86–88, 2004. 
 

 

A. Hamdy is an associate professor in the Faculty of 
Informatics and Computer Science, the British 

University, Egypt. She earned her B.Sc., M.Sc. and 

Ph.D degrees in electronics and electrical 
communications from the Faculty of Engineering, 

Cairo University in 1992, 1998, and 2003 

respectively.  

Her research focuses on software engineering 

and machine learning. 

 

 

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

568


