
 

 

 

Abstract—As a solution to the last mile problem in big 

metropolitan cities, free-floating bike-sharing service is 

becoming a new choice for short travels all over the world. 

Unlike the docked bikes which requires the users to borrow 

and return at fixed stations, free-floating bikes can be used 

everywhere. However, this feasibility also brings a higher 

management cost. The bikes should be scheduled from the 

regions with less demand to those with higher demand, based 

on a precise demand prediction. In this paper, we use deep 

learning techniques including Multi-Layer Perceptron and 

ConvLSTM networks for this task. We find that in the case of 

the insufficient training data, e.g., one-month data of Mobike, 

Multi-Layer Perceptron performs better than both 

ConvLSTM and two simple historical methods. 

 
Index Terms—Free-floating bike-sharing, demand 

prediction, deep learning. 

 

I. INTRODUCTION 

In modern cities, automobiles have become common, but 

the congestion problem of urban roads has become 

increasingly serious. More and more commuters choose 

public transportation to travel, saving time and economic 

costs. However, in many cases, the destination is still a 

certain distance away from the bus station, subway station, 

etc., and the commuter needs to walk for a while. To fill in 

this gap, free-floating shared bicycles appeared in 2014. It 

has the advantages of scanning the QR code to ride the 

bicycle, convenient borrowing and return, and low price. 

Compared with traditional public bicycles with stations, it 

takes into account the needs of users at any location, which 

greatly solves the last mile needs of commuters in a real 

sense. According to statistics released by the Beijing 

Municipal Commission of Transportation, as of the end of 

2019, the total number of shared bicycles in Beijing has 

stabilized at around 900,000. The average daily number of 

shared bicycles in Beijing is 1.272 million, and each bicycle 

will be used on an average of 1.4 times per day. According 

to statistics released in Shenzhen, the number of shared 

bicycles in operation in the city in 2019 was 480,000, and 

the average daily usage was about 849,000. 

The excessive amounts of different free-floating shared 

bikes bring the problem of urban management. In order to 
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seize market share, bicycle-sharing companies aggressively 

invested and dropped new bikes on the streets, but neglected 

offline operation and maintenance management, which 

caused chaos such as random parking. Problems such as 

crowding of public entrances and exits, sidewalks, blind 

lanes, and non-motorized vehicle lanes such as subways 

have occurred. People can also often see that bicycles of 

various colors are discharged in patches or swaying around. 

Some bicycles have been left unattended for too long and 

are covered with dust. In order to solve this problem, the 

mainstream idea is to control the amount of shared bicycles. 

This also makes accurate prediction of changes in the 

demand for bicycles and bicycle scheduling become more 

important. Regarding how to dispatch ys, which areas have 

a large flow of people and high demand, when the shared 

bicycle industry first appeared, dispatchers used some 

existing experience to predict and dispatch. However, as the 

shared bicycle industry is increasing, deep learning and 

machine learning models are widely used. Now forecasting 

is increasingly based on data-driven methods, rather than 

human experience. 

In this paper, we use deep learning techniques for 

free-floating bike-sharing demand prediction, which is 

important to the efficiency of the transportation system. 

Specifically, we compare the performance of a MLP model, 

a ConvLSTM model and two simple historical methods. We 

use a real-world shared bike usage dataset from Mobike to 

conduct experiments. The dataset contains 3765364 orders 

from May 10, 2017 to May 31, 2017 in Beijing, China. Our 

results show that MLP achieves a better prediction 

performance, both than two simpler methods and a more 

complex model, when the dataset used is insufficient, i.e., 

less than a month. 

The following of this paper is organized as follows. In 

Section II, we review some latest related work. In Section 

III, we state the problem formulation. In Section IV, we 

describe the dataset and the preprocessing steps. In Section 

V, we describe the models we use. In Section VI, we show 

our experiments. In Section VII, we draw our conclusion. 

 

II. RELATED WORK 

Shared bicycles have recently become a very popular 

research object. Researchers in many countries have 

conducted extensive studies on the time and space 

distribution of shared bicycles, which can be roughly 

divided into two categories, prediction based on machine 

learning models and model prediction based on deep 

learning. Deep learning is successful in different fields, 

including computer vision problems [1]-[3] and time series 

related problems [4], [5]. Deep learning is also being used in 

the transportation for traffic forecasting [6]. In this section, 
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both machine-learning based prediction and deep learning 

based predictions for bike-sharing demand are reviewed.  

A.  Machine Learning Based Prediction 

In [7], the authors proposed a two-part clustering 

algorithm, which clusters bicycle stations into groups. The 

Gradient Boosted Regression Tree (GBRT) predicts the total 

number of bicycles that will be rented out in New York and 

Washington. Then, based on multi-similarity, the authors 

propose an inference model to calculate the rent ratio 

between clusters.  

In Ref. [8], the authors used the two latest high-efficiency 

models, LSTM and GRU, to predict the short-term available 

number of bicycles in Suzhou through one-month historical 

data. Random forest is used for comparison as a benchmark. 

The results show that both RNN (LSTM and GRU) and 

random forest can achieve good performance with 

acceptable errors and relative accuracy. In terms of training 

time, random forest is more advantageous, while LSTM 

with complex structure can be more accurate and long-term 

prediction. 

In Ref. [9], the researchers found that the prediction 

mechanism of fuzzy inference can well capture the highly 

variable trend of shared bicycle usage. The Wang-Mendel 

rule generation method is used to generate a rule base, and 

then only current information such as date-related 

information and weather conditions are used to predict the 

bicycle share demand at any given point in the future. The 

simulation results show that the fuzzy inference predictor 

may be better than the traditional feedforward neural 

network in terms of prediction accuracy. 

Artificial immune system (AIS) and regression tree (RT) 

is combined in [10] for bicycle sharing system (BSS). Cells 

in AIS are the basic components. The model embeds the RT 

predictor model into AIS to form a cell bank, and uses a 

clone selection mechanism to generate cloned antibodies. 

B.  Deep Learning Based Prediction 

In Ref. [11], the authors proposed a novel data-driven 

spatiotemporal graph attention convolutional neural network 

for bicycle station-level traffic prediction (Gbikes), and 

designed a novel attentional convolutional neural network 

(GACNN). It has an attention mechanism to capture and 

distinguish the correlation between stations, which improves 

the effectiveness and accuracy. At the same time, the 

researchers conducted extensive experiments on three large 

bike sharing systems in New York, Chicago, and Los 

Angeles with a total of 11 million trips. 

In Ref. [12], the author proposed a new graph 

convolutional neural network with a data-driven graph filter 

(GCNN-DDGF) model, and explored two architectures of 

the GCNN-DDGF model. In addition, the author also 

proposed four types of GCNN models, including spatial 

distance matrix (SD), demand matrix (DE), average travel 

duration matrix (ATD) and demand correlation matrix (DC). 

In Ref. [13], five architectures for implementing RNN are 

provided and compared with four evaluation indicators: 

average absolute percentage error, root mean square 

logarithmic error, mean absolute error and root mean square 

error to predict site-level pickup demand for shared 

bicycles.  

In Ref. [14], it is proposed to develop a GCN-based 

station-level bicycle usage hourly demand forecasting 

architecture, which uses two graphical structures 

(GCN-IDW and gcnup) to reflect different spatial 

characteristics and compare performance.  

In Ref. [15], the authors used a novel spatio-temporal 

graph convolutional network (STGCN) to predict Wenling's 

pick-up demand for shared bicycles by exploring potential 

information from multiple demand points. At the same time, 

the graph convolutional neural network (CNN) is used to 

express the spatial dependency; in addition, according to the 

time series data representing the demand, the gated CNN is 

used to express the time correlation for picking up/returning 

the public bicycle. After comparing the results, STGCN 

consumes longer training time, but it needs the least time 

period to achieve convergence accuracy.  

In Ref. [16], in the first stage, the authors established a 

spatio-temporal graph neural network (ST-GNN) model to 

predict bicycle demand throughout New York, while 

capturing spatial correlation and temporal dependence in a 

unified network architecture. In the second stage, the 

truck-based station rebalancing problem is formulated as an 

optimization problem with transportation cost targets, and 

the integer linear programming (ILP) algorithm is used to 

effectively solve the problem. 

In Ref. [17], the authors proposed a new multi-graph 

convolutional neural network model to predict station-level 

bicycle traffic in a bicycle sharing system. The authors 

designed three different inter-station graphs to represent the 

bicycle sharing system, namely distance, interaction and 

correlation graphs; then proposed a fusion method to 

perform graph convolution operations on the three graphs at 

the same time.  

In Ref. [18], specifically, the authors integrate CNN and 

GRU-Net into the structure to represent the influence of 

external variables on space and time, and summarize 

ConvGRU-Net to understand the temporal and spatial 

dependence of the use of shared bicycles. Based on the 

effectiveness of the MBH model, the authors divided the 

four data sets by 15, 30, 45, and 60 minutes. The 

comparison results show that 30 minutes is the best time 

interval for realizing bicycle sharing supply and demand 

prediction. 

 

III. PREDICTION PROBLEM FORMULATION 

In this section, we formulate the free-floating 

bike-sharing prediction problem as a regression problem, 

similar to [19]. We would divide the spatial region into M 

by N grids and divide the temporal range into K time slots. 

We denote D(i, j, k) as the number of orders in the grid (i, j) 

and time slot k. The prediction problem is to predict D(i, j, 

k+1) for all i and j, given historical usage logs before time 

slot k. 

In our problem formulation, the historical data are the 

main input for prediction. In previous studies, the inclusion 

of time of the day or day of the week have been proven 

useful for improving model performance. Also, the 

meteorology factors, e.g., weather and air quality, could be 

influential in traveling. We plan to add these factors into 

consideration in the future work, when relevant data are 

available. 
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IV. DATASET DESCRIPTION AND PREPROCESSING 

A.  Dataset Description 

In this paper, we use a real-world bike-sharing usage 

dataset provided by Mobike, which used to one of the 

largest free-floating bike-sharing company in China. The 

dataset contains the bike usage orders for 22 days in Beijing, 

China. The usage of real-world transportation data has been 

proven important and necessary in previous studies [20-22]. 

Each order contains the following fields: order id, 

departure time, geohased origin location. We decode the 

geohased string back to longitude and latitude for further 

usage. Totally, we use 3,765,364 orders for this paper. 

The spatial region of the dataset is within the longitude 

range from 116.21 to 116.55 and the latitude range from 

39.76 to 40.03. This spatial range is basically the size of 

Beijing within the Fifth Ring Road. We divide the spatial 

region with 20 by 20 grids. 

The temporal range of the dataset lasts from May 10, 

2017 to May 31, 2017. We divide the temporal range by 1 

hour as the time slot. In total, we have 528 time slots, which 

corresponds to data from 22 days. We show the order 

statistics for each hour in May 10, 2017 and May 11, 2017 

in Fig. 1 and Fig. 2. As we can tell from these figures, the 

share bike demand presents a periodic pattern, which can be 

further used for prediction. We can also find that 

free-floating bikes are used heavily by commuters, when 

there are two peaks during the morning and evening rush 

hours. 

 

 
Fig. 1. Order statistics for each hour in May 10, 2017. 

 

 
Fig. 2. Order statistics for each hour in May 11, 2017. 

B.  Dataset Preprocessing 

We aggregate the order data into a matrix in 20 by 20 

spatial grids and 528 time slots. For each element of the 

matrix, it represents the number of orders with the start 

location within the specific spatial grid and the start time in 

the time slot. We show the distribution of the matrix 

element values in Fig. 3. 

 

 
Fig. 3. The distribution of the aggregated order data. 

 

The aggregated data follows a long-tail distribution, 

which is not suitable for machine learning or deep learning 

models. We use a log transformation to the data with 

log(i+1), where i is the original value, as our preprocessing 

step. For evaluation, we would transform the data back with 

the reverse function. The distribution of the transformed 

element values is shown in Fig. 4. The value range becomes 

much smaller and the tail is so obvious in Fig. 4. 

 

Fig. 4. The distribution of the transformed aggregated order data. 

 

V. MODELS 

In this study, we propose to use a simple MLP model to 

solve the free-floating bike-sharing demand prediction. We 

use the ConvLSTM in [19] and two simple historical 

methods as baselines. 

The MLP model is a typical structure of deep neural 

networks. It contains at least one hidden layer and use 

activation functions for non-linear feature learning. MLP are 

fully connected and we use a four-layer MLP model in this 

study. Dropout is not used in this study. 

For the baselines, we use a ConvLSTM model in [19] and 

the extreme gradient boosting (XGBoost) model in [23]. 

The first simple historical method uses the demand value 

from the last hour as the prediction and the second simple 

historical method uses the demand value the same hour from 

the previous day as the prediction. 

We denote the two simple historical methods as 
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HIST_HOUR and HIST_DAY, the MLP model as MLP, the 

XGBoost model as XGBoost, and the ConvLSTM model as 

ConvLSTM. 

 

VI. EXPERIMENTS 

A.  Parameter Settings 

We use a four-layer densely connected MLP in this study. 

We show the specific model structure of MLP used in this 

study in Fig. 5. Notice that with the change of input 

historical length, the number of trainable parameters of the 

MLP models would also change. 

 

 
Fig. 5. The model structure of MLP. 

 

For ConvLSTM and MLP models, we use the historical 

data from the last 6, 12, 18 or 24 hours as input frames and 

predict the one-hour ahead frame, where frame is used to 

represent the matrix in a time slot. The optimizer used in 

this study is Adam [24] and its learning rate is set to 1e-3. 

The batch size is set to 10 and the number of epochs is set to 

100. Python and TensorFlow are used for all experiments. 

B.  Evaluation Metrics 

Considering the limited data amount, we only use the last 

4 days of the whole dataset as the test set and the other data 

as the training set. The root mean squared error (RMSE) 

over the test set is used as our final evaluation metric. For a 

better prediction performance, we want the models to 

achieve a lower RMSE. 

 
TABLE I: EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE TEST 

SET 

Model 
Input Historical Length 

6 hours 12 hours 18 hours 24 hours 

HIST_HOUR 12.7706 

HIST_DAY 16.3164 

XGBoost 11.2539 11.7700 12.0636 12.0652 

ConvLSTM 10.6952 11.1844 11.7517 10.9736 

MLP 8.3258 8.6910 9.8477 9.6197 

 

C.  Results 

We show the results in Table I. As we can tell from Table 

I, a simple MLP model performs better than the complex 

ConvLSTM model, with the different input historical 

lengths. The MLP model also outperforms the two simpler 

historical methods. The best performance is achieved for an 

input historical length of 6 hours, both for MLP and 

ConvLSTM models. Considering the limited training data 

for only 18 days, using a longer input data length increases 

the probability of model overfitting and damages the 

performance on the test set. To fight against the possible 

overfitting problem, more data is necessary. 

Our result is different from the previous study, e.g., in 

[25], the authors compared different models including 

XGBoost, MLP and LSTM and found that LSTM 

outperformed other models in their study. This indicates that 

the different datasets may present different characteristics 

and a single model cannot always win on all datasets. 

 

VII. CONCLUSION 

In this paper, deep learning techniques are used for 

free-floating bike-sharing demand prediction, which is 

important to the efficient operation of this newly appeared 

transportation mode. Specifically, a MLP model, a 

ConvLSTM model and two simple historical methods are 

used. We use a real-world shared bike usage dataset from 

Mobike to conduct experiments. Our results indicate that 

MLP achieves a better prediction performance, both than 

two simpler methods and a more complex model, when the 

dataset used is insufficient, i.e., shorter than a month. For 

further research, more data is needed for training the 

sophisticated deep learning models, e.g., LSTM used in 

[25]. 
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