

Abstract—In this paper, two modified A* algorithms to

effectively solve the pathfinding problem in a static obstacles
racing game are proposed. Three real speedways of Formula
one (F1) are selected as our game speedways, to simulate and
analyze our study. The first modified A* algorithm uses a
line-of-sight algorithm to reduce the waypoints found by the
original A* algorithm; about 97% waypoints in the speedways
of F1 in Turkey, Italy and Hungary could be removed. The
second modified A* algorithm improves the performance of
original A* algorithm by heuristically considering the truth that
the game-controlled car should steer itself towards. That is to
say, we could reduce the lap times by only checking three
waypoints in front of the car, instead of checking four
waypoints (up, down, left and right) in the original A*
algorithm. Finally, a more general dynamic pathfinding
algorithm which can solve the random obstacles avoidance
problem in a racing game is also proposed.

Index Terms—Racing game, pathfinding, A* algorithm,
game AI

I. INTRODUCTION
Many different types of pathfinding problems exist.

Unfortunately, no one solution is appropriate to every type of
pathfinding problem. The solution depends on the specifics
of the pathfinding requirements for any given game. For
most racing game, the artificial intelligence (AI) for
opponent characters is needed to find there path [1]-[9]. In
our paper, we focus on the car racing game, which can be
seen as a kind of pathfinding problems.

In a car racing game, pathfinding is one of the most
important problems. Poor pathfinding can make game
characters seem very headless and artificial. Handling the
problem of pathfinding effectively can go a long way toward
making a game more enjoyable and immersive for the player.
The A* algorithm provides an effective solution to the
problem of pathfinding and it also be one of the most popular
algorithm used for the game’s development [10]. Assuming a
path exists between the starting point and the ending point;
then the A* algorithm guarantees to find the best path.

Although the A* algorithm is efficient, it still can consume

Manuscript received November 20, 2011； revised November 22, 2011.

This work was supported in part by the National Science Council of Taiwan
under the Grant NSC- 100-2221-E-262-026-.

Jung-Ying Wang is with the Department of Multimedia and Game
Science, Lunghwa University of Science and Technology, Taoyuan, 333,
Taiwan (e-mail: wyy@ mail.lhu.edu.tw).

Yong-Bin Lin is with the Department of Electronic Engineering,
Lunghwa University of Science and Technology, Taoyuan, 333, Taiwan
(e-mail: G972321024@ms.lhu.edu.tw).

considerable CPU cycles, especially if you want to simulate
pathfinding for a large number of game characters. The chief
shortcoming of the A* algorithm in a racing game is that it
can not solve the problem of random dynamics obstacles
avoidance.

In this paper, we will first study the A* algorithm in a car
racing game, and then proposes two modified A* algorithm
to do pathfinding. After that, we propose a more general
dynamic pathfinding algorithm to solve the problem of
random dynamics obstacles avoidance. All the three
algorithms are able to find the path for a car racing game and
can save the most import resource in game, CPU cycles.

II. MATERIALS AND METHODS
For a car racing game, the most common artificial

intelligence is waypoint navigation by carefully placing
points (nodes) in the game environment to move the
game-controlled characters between each point [3]. The
major drawback of this method is that these waypoints need
to be manually setup, and it is a time consuming work.
Meanwhile, these waypoints will depend upon the speedway
track; different speedway track requires different
configuration waypoints. In addition, the number of
waypoints and the location of waypoints are also different
due to human factors. In order to overcome these problems,
we propose two modified A* algorithms to solve them.
Finally, a more general dynamic pathfinding algorithm which
can solve the random obstacles avoidance problem in a
racing game is also proposed. In our paper, we will use the
A* algorithm [8], [10]-[12] to find the shortest path while
avoiding the obstacles. The A* algorithm uses path scoring to
determine the best path from the starting node to the
destination node. To actually score each node, A* basically
adds together two components. First, it looks at the cost to
move from the starting node to any given node. Next, it looks
at the cost to move from the given node to the destination
node.

Equation (1) shows the equation used for scoring any
given node. This equation computes each node's score by
adding the cost of getting there from the starting location to
the heuristic value, which is an estimate of the cost of getting
from the given node to the final destination.

f(n) = g(n) + h(n) (1)

where g(n) is the total distance; it has taken to get from the
starting position to the current location. h(n) is the estimated
distance from the current position to the goal destination. A
heuristic function is used to create this estimate on how far

Game AI: Simulating Car Racing Game by Applying
Pathfinding Algorithms

Jung-Ying Wang and Yong-Bin Lin

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

13

away it will take to reach the goal state. f(n) is the sum of g(n)
and h(n). This is the current estimated shortest path. The
pseudo code of A* algorithm is shown as Fig. 1.

Fig. 1. Pseudo code of A* algorithm

In this paper, three real speedway of Formula one (F1) are
selected as our game speedways, to simulate and analyze our
study. There are speedways of Turkey, Italy and Hungary.
Fig. 2 is the speedway image of F1 in grand prix of Turkey
which downloads from the official F1 website. The image
isometric scales up to the size of 1280*782 pixels. Our car
racing game is implemented by Microsoft XNA Game Studio.
The XNA platform is a programming environment that
allows users to create games for Windows Phone, the Xbox
360 console, and Windows-based computers.

A. Implementing the A* algorithm
Because the first step in pathfinding is to define the search

area, we need some way to represent the game world in a
manner that allows the search algorithm to search for and find
the best path. In our game, we use the trick of color collision
to do the collision detection [13]. Using this trick you first
need to make a collision detection map, as shown in Fig. 3.
This can be done easily by using any image processing
software (e.g., Photoshop), and then changes the track to the
color which users want to set it as the collision detection
color (e.g., block color). Everything else in the collision
detection map, where the cars are not allowed to drive, you
just need to paint them to white (or any color just do not use
the track color black). Ultimately, the game world is
simplified by placing 1280*782 nodes, throughout the game
environment. White color nodes represent obstacles and
other colors nodes represent the nodes which can be passed.
After that, we have divided our search area into a 1280*782
square grid. This particular method reduces our search area to

a simple two dimensional array. Each item in the array
represents one of the squares on the grid, and its status is
recorded as passable or un-passable. The path is found by
figuring out which squares we should take to get from node A
to node B. Once the path is found, the game-controlled car
moves from the center of one square to the center of the next
until the target is reached.

Fig. 2. The image of speedway of F1 in grand prix of Turkey

Fig. 3. The collision detection map of F1 in grand prix of Turkey

In the implementation of our A* algorithm, each time step
only four adjacent nodes (up, down, right and left) will be
checked, as shown in Fig. 4. In Fig. 4 the blue node
represents the current node and the green nodes are the
adjacent nodes. In addition, the image size of car is 18*12
pixels and moving speed is two pixels per time frame. The
racing game uses the default frame rate setting in XNA (60
frame / sec). Therefore, the maximum linear velocity of the
car is equal to 120 pixels per second.

Fig. 4. The current node and the adjacent nodes in A* algorithm

B. The first modified A* algorithm: reducing waypoints by a
line-of-sight algorithm

As you known, the more nodes placed in the game world,

add START to OPEN list

while OPEN not empty

get node n from OPEN that has the lowest f(n)

if n is GOAL then return path

move n to CLOSED

for each n' = CanMove(n, direction)

g(n') = g(n) + 1

calculate h(n')

if n' in OPEN list and new n' is not better, continue

if n' in CLOSED list and new n' is not better, continue

remove any n' from OPEN and CLOSED

add n as n's parent

add n' to OPEN

end for

end while

if we get to here, then there is No Solution

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

14

the slower the pathfinding process. If we simplify the search
area by using fewer nodes, the pathfinding work will save
many CPU cycles. In our study, we first used the original A*
pathfinding algorithm to find the best path between the start
waypoint and the end waypoint, as illustrated in above
section. There are 985 waypoints, 853 waypoints and 727
waypoints found in the speedway of F1 in Turkey, Italy and
Hungary, respectively. After that, we refine above found path
by considering a line-of-sight algorithm to further reduce the
number of nodes.

To implement this, the mathematical formula of the
Pythagoras Theorem for triangles is used. It first calculates
the way length (distance) between the two different nodes. If
there is no obstacle across the way, then no collision occurs,
as shown in Fig. 5 the waypoints (1, 2) and waypoints (1, 3).
Because the waypoint 2 is between the waypoint 1 and 3 and
there is no collision occurs, we can remove the waypoint 2
using the shortcut 1-> 3 instead of the path 1-> 2-> 3. This
line-of-sight process will continue until the end waypoint
reached.

Fig. 5. Modified A* algorithm by a line-of-sight algorithm

C. The second modified A* algorithm: only searching the
forward direction

We further improve the performance of A* algorithm by
heuristically considering the truth that the game-controlled
car should steer itself towards. Therefore, in this modified
A* algorithm, we only need to search three waypoints in
front of the car, instead of searching four adjacent nodes (up,
down, left and right) in the previous study. The three
waypoints are front right, directly ahead and front left of the
car, as shown in Fig. 6.

Fig. 6. Modified A* algorithm: only searching the forward direction

D. Dynamic pathfinding algorithm for random obstacles
avoidance

In order to generalize the pathfinding algorithm in a racing
game solves the dynamic obstacles avoidance problem. We
have recently proposed a dynamic pathfinding method in [9].
Two collision detection points are put in front of the car’s
right side and left side, as shown in Fig. 7. Where the variable
y is the half width of car, that is 6 pixels, and the collision
detection distance x is an adjusted variable indicated the
distance from the car center to the center of the two collision
detection points.

Fig. 7. Collision detection points of car

How do we actually perform the collision detection in this
algorithm? It is easy. We just need to put several color
detection points in front of (or around) the moving car.
Anytime, if the position of the car’s color detection point its
color is the same as the track color (black), then no collision
occurs. Otherwise, if the position of the color detection point
its color is white (or not the track color), indicating the car is
leaving the track, which means the car needs to turn a
direction to keep the car inside the track. In our game’s
implementation, we will calculate the car’s position in
advance. If in the next time frame the collision is detected.
We just simply turn a default setting radian for the car to
avoid collision. In other words, when the detection point of
left front touches the edge of track, the car will turn in a
clockwise direction. Otherwise, the car will turn in a
counterclockwise direction, if the detection point of right
front touches the edge of track. In order to make the
game-controlled car look more natural and smooth, the car’s
rotation speed is set to 0.25 radians (14.3 degrees) in this
study.

Fig. 8. New collision detection points when two original collision detection

points are activated at the same time

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

15

In very rare cases, the car may get stuck in consecutive
curves. Therefore when the two collision detection points are
activated at the same time, the detection points were changed
to the 45 degree points in front of the right side and left side
of the car, as shown in Fig. 8. That is, the collision detection
points, in Fig. 7, will change from the inside two points to the
outside two points, in order to have more robust control of the
car. As seen in Fig. 8, using this trick it can avoid the car get
stuck by reducing the two collision points to one. Then, we
can make the corrected judgment to control the car to turn
right or left.

III. EXPERIMENTAL RESULTS AND DISCUSSION
The major drawback of waypoint navigation method is that

these waypoints need to be manually setup. Meanwhile, these
waypoints will depend upon the speedway track. In addition,
the number of waypoints and the location of waypoints are
also different due to human factors. Therefore, we could
overcome the above drawbacks by using our modified A*
algorithm; and both of them only need to find the path once
before running the game. The disadvantage is that the finding
path will be exactly the same. That is, the game-controlled
car is always around the racing track using the same path. The
comparison of simulated results for F1 in grand prix of
Turkey, Italy and Hungary are summarized as in Table I. The
detailed analysis and discussion of results are shown in the
following sections.

TABLE I: COMPARISON OF SIMULATED RESULTS FOR THE THREE

ALGORITHMS

 Line-of-sight
algorithm

Searching the
forward
direction only

Dynamic
pathfinding
algorithm

Turkey 13.48* 13.13 13.92
Hungary 12.38 11.85 12.43

Italy 10.40 10.15 10.45

Path

static path

static path

Not static path,
dynamic
changing

Characteristic

looking a little bit
stiff in the
successive curve

may swing,
the shortest
lap time

random
obstacles
avoidance, more
natural

*Lap time in second

A. Results of the first modified A* algorithm: reducing
waypoints by a line-of-sight algorithm

The pathfinding results by using the first modified A*
algorithm, combining a line-of-sight algorithm, to reduce the
waypoints found by the original A* algorithm are shown in
Table II and Fig. 9 to Fig. 14. In Table II, the average result
of the reduced percentage of waypoints is 97.0%. That is to
say, about 97% waypoints could be removed from the
original A* algorithm. Fig. 9, Fig. 11 and Fig. 13 show that
the 28 waypoints, 32 waypoints and 18 waypoints created by
the line-of-sight algorithm to control the car for F1 in grand
prix of Turkey, Italy and Hungary, respectively.

In other words, we can remove the nodes inside the straight
line part of racing track to saving the CPU cycles.
Comparatively speaking, if the racing track is winding, more
waypoints are needed, as shown in Fig 10, Fig.12 and Fig. 14

for F1 in grand prix of Turkey, Italy and Hungary,
respectively. In addition, because we use the line-of-sight
concept to further reduce the waypoints found from original
A* algorithm, the car’s moving looks a little bit stiff in the
successive curve.

TABLE II: WAYPOINTS NEED FOR A* ALGORITHM AND LINE-OF-SIGHT

ALGORITHM
 A* algorithm Line-of-sight

algorithm
Waypoints reduced

percentage
Turkey 985 28 97.2%

Hungary 853 32 96.2%
Italy 727 18 97.5%

average 855 26 97.0%

Fig. 9. The pathfinding result by using the first modified A* algorithm for the

speedway of F1 in Turkey

Fig. 10. More waypoints needed in sharp curve for the speedway of F1 in

Turkey

Fig. 11. The pathfinding result by using the first modified A* algorithm for

the speedway of F1 in Italy

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

16

Fig. 12. More waypoints needed in sharp curve for the speedway of F1 in

Italy

Fig. 13. The pathfinding result by using the first modified A* algorithm for

the speedway of F1 in Hungary

Fig. 14. More waypoints needed in sharp curve for the speedway of F1 in

Hungary

B. The second modified A* algorithm by searching the
forward direction only

The advantages of the second modified A * algorithm is
that we can get the shortest lap time. This is because in each
time step checking nodes from four nodes of the original A*
algorithm reduce to three nodes, as shown in Fig. 6. The
disadvantage is that the car may swing when the car goes
around the consecutive sharp bend. This situation will occur
while the car constantly adjust the direction of travel, up and
down, in a very short continuous period of time, as shown in
Fig. 15.

Fig. 15. The situation of swing

C. Dynamic pathfinding algorithm for random obstacles
avoidance

The advantages of dynamic pathfinding algorithm for
random obstacles avoidance is that it can do the pathfinding
in real time and it looks more natural then the static path of
A* finding. In this study, the variable of collision detection
distance x is carefully studied, and another variable of car’s
rotation speed is fixed to 0.25 radians (14.3 degrees). The
experimental results, as shown in Table III, show that the lap
time decreases as the collision detection distance increases
when the car do not stick by any curve. That is, the lap time
decreases while the collision detection point is far from the
car. It is because the car has more time to perceive the edge of
speedway to respond the collision. However, when the cars
change the racetrack from straight to the more curvature
curve, or meet the successive curve in a short distance, large
value of the collision detection distance will cause the car
stick in the corner of racetrack. Because the finding path of
the dynamic pathfinding algorithm is not the shortest path,
therefore the lap time will a little bit higher then above
modified A* algorithms.

TABLE III: THE LAP TIME FOR DIFFERENCE COLLISION DETECTION DISTANCE

x* 15 20 23 25 30
Turkey 14.37** 14.08 13.92 × ×

Hungary 13.02 12.83 12.7 12.6 12.43
Italy 10.68 10.62 10.57 10.53 10.45

*x： Collision detection distance (pixels). **Lap time in second.

IV. CONCLUSION
The most common artificial intelligence in a racing game

is waypoint navigation by carefully placing waypoints (nodes)
in the game environment to move the game-controlled
characters between each point. This is a very time consuming
and CPU intensive problem. Using the A* algorithm can
effectively solve the pathfinding problem in a static racing
game environment; therefore, we present two modified A*
algorithm instead of putting waypoints by hand and
minimum the lap time. Finally, we propose a more general
dynamic algorithm which can solve the random obstacles
avoidance problem in a racing game. All the three algorithms
are able to find the path for a car racing game and can save
the most import resource in game, CPU cycles.

REFERENCES
[1] L. delaOssa, J. A. Gamez, and V. Lopez, “Improvement of a car racing

controller by means of Ant Colony Optimization algorithms,” in IEEE

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

17

Symposium on Computational Intelligence and Games, 2008, pp.
365-371.

[2] S. Fujii, T. Nakashima, and H. Ishibuchi, ”A study on constructing
fuzzy systems for high-level decision making in a car racing game,” in
IEEE Congress on Evolutionary Computation, 2008, pp. 3626-3633.

[3] T. Nakashima, and S. Fujii, “Designing high-level decision making
systems based on fuzzy if-then rules for a point-to-point car racing
game,” Soft Computing, vol. 14, no. 5, pp. 529-536, March 2010.

[4] J. Togelius, P. Burrow, and S. M. Lucas, “Multi-population
competitive co-evolution of car racing controllers,” in IEEE Congress
on Evolutionary Computation, 2007, pp. 4043-4050.

[5] J. Togelius, and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005, pp. 1906-1913.

[6] J. Togelius, and S. M. Lucas, “Evolving robust and specialized car
racing skills,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2006, pp. 1187 - 1194.

[7] A. Agapitos, J. Togelius, and S. M. Lucas, “Evolving controllers for
simulated car racing using object oriented genetic programming,” in
GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation. New York, NY, USA: ACM, 2007, pp.
1543–1550.

[8] Y. C. Hui, E. C. Prakash, and N. S. Chaudhari, "Game AI: artificial
intelligence for 3D path finding," in TENCON 2004. 2004 IEEE Region
10 Conference, 2004, vol. 2, pp. 306-309.

[9] J. -Y Wang, and Y. -B Lin, "An Effective Method of Pathfinding in a
Car Racing Game,” in The 2nd International Conference on Computer
and Automation Engineering, 2010, pp. 26-28.

[10] D. M. Bourg, and G. Seemann, AI for Game Developers, O’REILLY,
2004, ch. 7.

[11] S. Rabin, AI Game Programming Wisdom 4, Charles River Media, ,
2008, ch. 2.

[12] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing
Company, Wellsboro, PA, 1980, pp 366-381.

[13] B. Hamboeck, “XNA or game development for everyone –
restructuring the game part2,” .Net Developer’s Journal, vol. 6, pp. 14-
29, 2008.

Dr Jung-Ying Wang received his PhD from
National Taiwan University of Science and
Technology in computer science and information
engineering, MSc from National Taiwan University
in computer science and information engineering and
BSc from National Taiwan University of Science and
Technology, Taiwan. His main areas of research are
game AI, bioinformatics, machine learning,
intelligent systems on the web, game programming
and protein structure prediction. He is currently an

associate professor in the multimedia and game science department,
Lunghwa University of Science and Technology, Taiwan.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

18

