Abstract—An effective and precise method for shoreline detection from satellite imagery is presented. The algorithm is based on two main steps: (1) the detection of singularities in a single image using non-separable wavelet and (2) amendment procedure using distance regularized level set evolution scheme. Firstly, by selecting appropriate parameters, the non-separable wavelet filter banks which can provide information of different orientations are used to capture the singularities of the selected single satellite image; Secondly, obtaining the modulus image by utilizing sub-images decomposed from the non-separable wavelet filter banks; Thirdly, extracting the shoreline iteratively with the use of distance regularized level set evolution scheme. Experiments are conducted and results show that the proposed algorithm is applicable to satellite imagery, and the shoreline is robust to noises as well as blurring.

Index Terms—Shoreline detection, non-separable wavelet, Satellite imagery, edge detection, level set method, distance regularized level set evolution.

I. INTRODUCTION

The detection and extraction of shoreline is of great importance in several applications such as cartography and the environmental management of the entire coastal zone. Knowledge of shoreline can be utilized for measuring and characterizing land and water resources and the perimeter of shoreline. Information about shoreline position, orientation and geometric shape is also essential for autonomous navigation, geographical exploration, coastal erosion monitoring and modeling, and coastal resource inventory and management [1].

Conventionally, the shoreline is defined as the physical interface between land and water [2]. According to the definition, there are two factors which can determine the position of the shoreline: (1) short-term variations in sea level that caused by astronomical and meteorological factors [3]; and (2) alterations in the shapes and volumes of sediments along the profile of shore.

The above two types of factors are essential for the management of coastal areas. The first type of factor reveals a definite tendency and is more important as it enables predictions to be made about whether or not the shore is subject to significant changes. And the second type of factor discloses the magnitude of the variability over a long time and therefore enables a feasible coastal management plan to define and establish coastal protection area.

For these reasons, to detect and extract the shoreline from satellite imagery has attracted many attentions [4], [5]. Boak and Tunner[6] described up to 44 different indicators to locate the shoreline used by different authors from the 1950s until today. There are generally two types of approaches: either a feature that is visibly discernible be utilized in coastal imagery or the intersection of a tidal datum with the coastal profile is detected as the shoreline.

The disadvantages and challenges of the existing methods are: (1) most of them are manual, which means the research people must specify some key points or other prior knowledge for the extraction methods[7]-[9]. Due to the subjectivity and substantial effort involved in manual delineation, an automatic or semi-automatic method has been long desired; (2)some of the methods only applicable for one type of satellite imagery and disregard other images acquired from other satellites, therefore, an adaptive methodology which can be utilized for most of the satellite imagery, such as Landsat imagery, SPOT imagery and CBERS imagery, is also desired; (3) the images acquired from different some remote platforms are often blurred due to immature imaging technology, and a robust methodology to noises and blurring is essential for researchers; and (4) shoreline is interface between land and water, and, in other words, shoreline represents singularities of a satellite imagery. Unfortunately, these methods do not take the singularities of the shorelines into consideration.

In summary, the current method to detect and extract shoreline should mainly consider the criteria of objectivity, automaticity, and robustness. From image processing point of view, the singularities represent the high frequency components of image[10]-[13]. Employing singularities to locate shoreline should be given more high frequency components. Wavelet transform is a time-frequency analysis tools which is wildly used in signal and image processing fields. It has the property of multi-resolution with which we can analyze signal at different scales. Therefore, in the application of singularity detection, we can employ comprehensive information of the signal at different scales to judge if the points belong to an edge. This is the superiority of wavelet transform compared with other edge detection method. In addition, traditional wavelet is separable which means when it is utilized in image processing, we can divide the whole procedure into two steps: (1) performing wavelet
transform along vertical direction and (2) performing wavelet transform along horizontal direction. Most importantly, the two steps are exchangeable, which means this kind of procedure cannot detect much singular information as well as the direction information. However, non-separable wavelet transform cannot be divided into such two steps due to its special decimation such as: quincunx decimation. Compared with separable wavelet, non-separable wavelet is capable of extracting more high frequency components especially the direction information from original image. So we proposed a shoreline extraction algorithm which combines non-separable wavelet transform with an amendment processing which is from level set method [14], and the results are shown in Fig 1.

![Fig. 1. shoreline extracted by our algorithm: (a) and (c) are original image from SPOT satellite and Landsat satellite, respectively; (b) and (d) are the extracted shorelines](image)

The remainder of this paper is organized as follows: In Section II, the sources of the original images for our research are demonstrated and in Section III, non-separable wavelet construction is briefly introduced. Then, the amendment processing from level set method by using distance regularized level set evolution is introduced in Section IV. Experiment results and results analysis are presented in Section V. And finally, in Section VI, the conclusions are drawn.

II. IMAGE DATA SOURCE

The data sources used for our research are downloaded from the homepages of seven different satellites, namely Landsat-7, SPOT-5, CBERS-2, WorldView-2, Aster, Quick-Bird and IKONOS. The seven satellites are representative for remote sensing, and some characters of them are shown in Table I. And the pictures can be download from:\nhttp://landsat.gsfc.nasa.gov/\http://www.astrium-geo.com/cn/\http://www.satimagingcorp.com/

To verify the validity of our algorithm to all, at least the most of, different satellites imagery, we randomly selected 80 images from the downloaded images of different satellites and established an image set for our future research (images from the same satellite are collected into the same category). However, in this paper, we will only primarily utilize three images from our image set to demonstrate how good our methodology is. And Table II identifies the three images.

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Orbit</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat-7</td>
<td>705 km altitude, Sun synchronous</td>
<td>15 to 90 meters</td>
</tr>
<tr>
<td>SPOT-5</td>
<td>822 km altitude, Sun synchronous</td>
<td>Please browse website for detail information.</td>
</tr>
<tr>
<td>WorldView-2</td>
<td>770 km altitude, Sun synchronous</td>
<td></td>
</tr>
<tr>
<td>Quick-Bird</td>
<td>450 km altitude, Sun synchronous</td>
<td></td>
</tr>
<tr>
<td>IKONOS</td>
<td>681 km altitude, Sun synchronous</td>
<td></td>
</tr>
<tr>
<td>CBERS-2</td>
<td>778 km altitude, Sun synchronous</td>
<td>20m - 260m</td>
</tr>
<tr>
<td>Aster</td>
<td>705 km altitude, Sun synchronous</td>
<td>15 to 90 meters</td>
</tr>
</tbody>
</table>

III. METHODOLOGY

The overall flow is shown as Fig 2: differentiated form the traditional wavelet transforms, the non-separable wavelet transform is capable of extracting more high frequency components from images with different orientations via properly selecting parameters. Using non-separable wavelet transform to a single image, we can get the coefficients which corresponding to different filters. Based on the coefficients, we can then calculate the modulus and get the approximate shorelines of the experimental image.

![Fig. 2. Basic flow of proposed method](image)
errors. Finally, we will assign values to new pixels on the narrowband according to the assignment algorithm. Consequently, through the above algorithm we will get a clear shoreline from each experimental image.

A. Construction of Non-Separable Wavelet

In our prior works [18]-[19], a non-separable wavelets is constructed by using centrally symmetric matrix $S(\alpha, \beta)$, where α and β are parameters. From the centrally symmetric matrix, we may derive a class of the non-separable wavelet below:

The low pass filter $m_0(z_1, z_2)$ and high pass filter $m_j(z_1, z_2)$ ($j = 1, 2, 3$) are defined as follow:

$$m_j(z_1, z_2) = \frac{1}{4}(1, z_1, z_2, z_2^2) \left(\prod_{i=1}^{\infty} S_{(\alpha, \beta)}(z_1^i, z_2^i) S^T_{(\alpha, \beta)} \right) V_j$$

where $(z_1, z_2) \in \partial D \times D_j, j = 1, 2, 3$.

$$D = \{ z \mid z \leq 1, D = z \mid z \geq 1, V_0 = (1, 1, 1, 1)^T, V_1 = (1, -1, 1, 1)^T, V_2 = (1, 1, -1, 1)^T, V_3 = (1, -1, -1, 1)^T \}$$

$S_{(\alpha, \beta)}$ is centrally symmetric orthogonal matrix, and $D(z_1, z_2)$ is the matrix of trigonometric polynomial below:

$$D(z_1, z_2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & z_1 & 0 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & 0 & z_1 z_2 \end{bmatrix}, (z_1, z_2) \in \partial D \times D \quad (1)$$

and the matrix:

$$S_{(\alpha, \beta)} = \frac{1}{2} \begin{bmatrix} z_1 + z_2 & z_2 - z_4 & z_2 - z_4 & z_1 - z_3 \\ z_2 - z_4 & z_2 + z_1 & z_1 - z_3 & z_4 - z_2 \\ z_4 - z_2 & z_1 - z_3 & z_1 + z_2 & z_2 - z_4 \\ z_1 - z_3 & z_4 - z_2 & z_2 - z_4 & z_2 + z_1 \end{bmatrix} \quad (2)$$

where $z_1 = \cos \alpha, z_2 = \sin \alpha$, $z_3 = \cos \beta$, $z_4 = \sin \beta$, according to (1),(2) and (3) the size of the filters relay is dependent on the number of N. Explicitly, the relationship is

$$\text{filtersize} = 2(N+1) \times 2(N+1) \quad (3)$$

By selecting different parameters, we could get different wavelet filters. For example, if $N = 3$, ($\alpha = \pi / 4$, $\beta = \pi / 16$), ($\alpha = \pi / 3$, $\beta = \pi / 256$), ($\alpha = \pi / 5$, $\beta = 4\pi / 7$), filters m_0, m_1, m_2, m_3 are:

$$\begin{align*}
0.2019 & -0.0612 & 0.1392 & 0.0922 & 0.0909 & -0.3855 & -0.0097 & 0.0320 \\
0.1079 & -0.0327 & 0.0744 & -0.0493 & 0.0583 & 0.2061 & -0.0052 & -0.0171 \\
-0.0365 & -0.0111 & 0.3057 & 0.0837 & -0.0806 & 0.1332 & -0.0492 & 0.1623 \\
-0.0094 & 0.0029 & 0.1704 & -0.0493 & -0.0376 & -0.0519 & -0.0268 & -0.0883 \\
-0.0083 & -0.0286 & -0.0519 & -0.0376 & -0.0493 & 0.1704 & 0.0029 & -0.0094 \\
0.1623 & -0.0492 & 0.1332 & -0.0086 & 0.0837 & 0.3057 & -0.0111 & -0.0365 \\
-0.0171 & -0.0052 & 0.2061 & 0.0583 & -0.0493 & 0.0744 & -0.0027 & 0.1079 \\
0.0320 & -0.0097 & -0.3855 & 0.1090 & 0.0922 & 0.1392 & 0.0612 & 0.2019
\end{align*}$$

The parameters of filters we employed [20], are listed in Table III, and the sub-images processed by filters are shown in Fig. 3.

Fig. 3. Sub-images of four non-separable wavelet filters: (a)original image;(b) $\rho = \pi / 4$; (c) $\rho = \pi / 2$; (d) $\rho = 3\pi / 4$ and (e) $\rho = \pi$

B. Amendment Processing

Amendment processing procedure which is from the level set method is based on the distance regularized level set evolution[14],the algorithm is as follows:

Initialization: Initialize level set function(LSF) ψ as ψ_n and narrowband $B^0 = \bigcup_{i,j \in 0} N_{i,j}$ where Z^0 is the set of the zero crossing points of ψ_n;

Update the LSF: $\psi^{k+1}_{i,j} = \psi^k_{i,j} + \tau L(\psi^k_{i,j})$ on the narrowband where $k = 0, 1, 2, \cdots$;

Update the narrowband: Define set Z^{k+1} as a set of zero crossing pixels of $\psi^{k+1}_{i,j}$ on B^k update criteria $B^{k+1} = \bigcup_{i,j \in Z^{k+1}} N_{i,j}$.

\begin{table}[h]
\centering
\caption{Parameters of Employed Filters}
\begin{tabular}{cccc}
\hline
Orientation & Parameters & \textbf{N} = 3 & Filter \\
\hline
$\rho = \pi / 4$ & $\alpha_1 = 31\pi / 50$, $\beta_1 = 9\pi / 50$ & m_2 \\
$\rho = \pi / 2$ & $\alpha_2 = 33\pi / 50$, $\beta_2 = 3\pi / 50$ & m_2 \\
$\rho = 3\pi / 4$ & $\alpha_3 = 21\pi / 50$, $\beta_3 = 2\pi / 50$ & m_1 \\
$\rho = \pi$ & $\alpha_4 = 12\pi / 25$, $\beta_4 = 13\pi / 25$ & m_1 \\
\hline
\end{tabular}
\end{table}
Assign value to new pixel on the narrowband: Every pixel \((i, j) \) in \(B_{k+1} \) but not in \(B_k \), set \(\psi_{i,j}^{k+1} \) to \(h \) if \(\psi_{i,j}^k > 0 \), or else set \(\psi_{i,j}^{k+1} \) to \(-h\), where \(h \) is a constant, which can be set to \(r+1 \) as a default value;

Determine the topping condition: If either the zero crossing points stop varying for consecutive iterations or exceeds a prescribed maximum number of iterations, then stop the iteration, otherwise, go to Step 2. And the codes can be downloaded from: http://www.engr.uconn.edu/~cmli/.

IV. EXPERIMENTS

We have conducted two types of experiments in our research: (1) detecting and extracting shoreline directly from different satellite imagery, and (2) testing the robustness of our algorithm to noises and blurring. The results are shown in Fig.4-Fig.9.

Fig. 4. Shoreline extracted directly from the CBERS-2 satellite image. (a) is original image; (b)-(e) are the images processed via non-separable wavelet filters with different parameters; (f) is the extracted shoreline which is plotted by the red curve.

Fig. 5. Shoreline extracted directly from the SPOT-5 satellite image. (a) is original image; (b)-(e) are the images processed via non-separable wavelet filters with different parameters; (f) is the extracted shoreline which is plotted by the red curve.

Fig. 6. Shoreline extracted directly from the Landsat-7 satellite image. (a) is original image; (b)-(e) are the images processed via non-separable wavelet filters with different parameters; (f) is the extracted shoreline which is plotted by the red curve.

Fig. 7. Zoomed-in shoreline details. (a) is the original image from SPOT-5 satellite and (c) is the original image from Landsat-7 satellite.

Fig. 8. Robustness of the proposed method. (a) is noised image which is contaminated by zero means Gaussian noise with variances 0.02; (c) is the blurred image; (b) and (d) are the extracted shorelines.

In Fig. 4 and Fig. 6, we demonstrate the final shorelines extracted directly from different satellite imagery. Fig. 4(a) is the original image from CBERS-2 satellite, Fig. 4(b) to Fig. 4(e) are the images processed via non-separable wavelet filters with different parameters, and Fig. 4(f) is the extracted shoreline which is plotted by the red curve. The same is to Fig. 5 and Fig. 6.

In Fig. 8, we have testified the robustness of our methodology in two circumstances: (1) images contaminated with Gaussian noises; and (2) images blurred by motion. According to the results, our methodology can not only robust to noises, but also have high robustness to blurring.

More results are shown in Fig. 9.
Fig. 9. Results of our algorithm. (a-1),(b-1),(c-1),(d-1),(e-1),(f-1) are original images from Landsat-7, SPOT-5, Aster, WorldView-2, IKONOS and Quick-Bird, respectively; (a-2),(b-2),(c-2),(d-2),(e-2),(f-2) are extracted shorelines corresponding to each original image. The same is to (g-1),(h-1),(i-1),(j-1),(k-1),(l-1) and (g-2),(h-2),(i-2),(j-2),(k-2),(l-2).

V. CONCLUSION

In this paper, we have proposed a simple but powerful algorithm for shoreline detection and extraction on single satellite image. Our proposed algorithm can not only easily detect and extract shoreline from single satellite image, but is also robust to noises and blurring.

In our experiments, the validating performance of our proposed algorithm is presented. It was shown that with non-separable wavelet, the singularities of shoreline can be detected effectively. And the amendment procedure based on distance regularized level set evolution (DRLSE) can accurately extract the shoreline according to the sub-images obtained from the first step. Additional research on robustness is also presented. It was demonstrated that our proposed algorithm could robust to not only noises but also blurring.

In the future, the algorithm described in this paper could be improved and extended works would be done in the following areas. Firstly, constructing a self-adaptive non-separable wavelet to better detect the singularities in single image; Secondly, modifying the distance regularized level set evolution (DRLSE) or adopting other creative methods to more accurately extract the shoreline.

REFERENCES
[1] H. Liu, “Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding