• Jul 29, 2019 News!IJMLC Had Implemented Online Submission System, Please Sumbit New Submissions thorough This System Only!   [Click]
  • Jul 16, 2019 News!Good News! All papers from Volume 9, Number 3 have been indexed by Scopus!   [Click]
  • Jul 08, 2019 News!Vol.9, No.4 has been published with online version.   [Click]
General Information
    • ISSN: 2010-3700 (Online)
    • Abbreviated Title: Int. J. Mach. Learn. Comput.
    • Frequency: Bimonthly
    • DOI: 10.18178/IJMLC
    • Editor-in-Chief: Dr. Lin Huang
    • Executive Editor:  Ms. Cherry L. Chen
    • Abstracing/Indexing: Scopus (since 2017), EI (INSPEC, IET), Google Scholar, Crossref, ProQuest, Electronic Journals Library.
    • E-mail: ijmlc@ejournal.net
Dr. Lin Huang
Metropolitan State University of Denver, USA
It's my honor to take on the position of editor in chief of IJMLC. We encourage authors to submit papers concerning any branch of machine learning and computing.

IJMLC 2018 Vol.8(5): 513-517 ISSN: 2010-3700
DOI: 10.18178/ijmlc.2018.8.5.738

Hybrid Approach for Intrusion Detection Using Fuzzy Association Rules Plus Anomaly and Misuse Detection

Samira Douzi, Ibtissam Benchaji, and Bouabid El Ouahidi
Abstract—In today’s world, users and enterprises are facing a growing number of internet attacks that are causing damage to their networks. The design and implementation of efficient intrusion detection algorithms is mandatory to minimise such damage and to preserve the integrity and availability of computer networks. Our study, which differs from some of the approaches in the literature that handle anomaly detection and misuse detection separately and, then, aggregate the outcomes, is a novel method for intrusion detection in network traffic based on a hybrid system that hierarchically combines anomaly detection, misuse detection and fuzzy rules. Two techniques for feature selection are used in the training phase, consisting first of reducing the feature space with an Autoencoder and, then, using the Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) to identify the relevant features that are highly predictive in detecting malicious behaviour. These techniques are applied to reduce the input data, which influences the number of fuzzy rules generated. The proposed approach aims to be an accurate and flexible detection system that minimises the number of false alarms and increases the intrusion detection rate.

Index Terms—Anomaly detection, deep learning, fuzzy logic, misuse detection.

The authors are with University Mohammed V Faculty of Science IPSS. B.O. 1014, Rabat, Morocco (e-mail: samiradouzi8@ gmail.com, b.ibtissam@gmail.com, Bouabid.ouahidi@gmail.com).


Cite: Samira Douzi, Ibtissam Benchaji, and Bouabid El Ouahidi, "Hybrid Approach for Intrusion Detection Using Fuzzy Association Rules Plus Anomaly and Misuse Detection," International Journal of Machine Learning and Computing vol. 8, no. 5, pp. 513-517, 2018.

Copyright © 2008-2019. International Journal of Machine Learning and Computing. All rights reserved.
E-mail: ijmlc@ejournal.net