• Jun 14, 2017 News!Vol.6, No.3 has been indexed by EI(Inspec)!   [Click]
  • May 03, 2016 News!Vol.5, No.5 has been indexed by EI(Inspec)!   [Click]
  • May 03, 2016 News!Vol.5, No.4 has been indexed by EI(Inspec)!   [Click]
General Information
    • ISSN: 2010-3700
    • Frequency: Bimonthly
    • DOI: 10.18178/IJMLC
    • Editor-in-Chief: Dr. Lin Huang
    • Executive Editor:  Ms. Cherry L. Chen
    • Abstracing/Indexing: Engineering & Technology Digital Library, Google Scholar, Crossref, ProQuest, Electronic Journals Library, DOAJ and EI (INSPEC, IET).
    • E-mail: ijmlc@ejournal.net
Editor-in-chief
Dr. Lin Huang
Metropolitan State University of Denver, USA
It's my honor to take on the position of editor in chief of IJMLC. We encourage authors to submit papers concerning any branch of machine learning and computing.
IJMLC 2015 Vol.5(5): 420-425 ISSN: 2010-3700
DOI: 10.7763/IJMLC.2015.V5.545

Dimensional Reduction and Data Visualization Using Hybrid Artificial Neural Networks

Chee Siong Teh, Ming Leong Yii, and Chwen Jen Chen
Abstract—Data with dimension higher than three is not possible to be visualized directly. Unfortunately in real world data, not only the dimension are often more than three, very often real world data contain temporal information that makes the data only useful and meaningful when they are interpreted in sequence. Dimensionality reduction and visualization techniques such as self-organizing map (SOM) are usually used to explore the underlying multidimensional data structure. However, SOM only preserves inter-neurons distances in the input space and not in the output space due to the rigid grid used in SOM. Visualization induced self organizing map (ViSOM) was proposed as an extension of SOM in order to preserve the output space topology. In this paper, the modified adaptive coordinates (AC) technique is proposed to improve the visualization of SOM without the need to increase the number of neurons as in ViSOM. With a better visualization map formed, a post-processing technique is incorporated into the algorithm to produce a hybrid that is capable to extract temporal information contained in the data. Empirical studies of the hybrid techniques yield promising topology preserved visualizations and data structure exploration for synthetic and benchmarking datasets.

Index Terms—Adaptive coordinates, artificial neural networks, spatial-temporal multivariate data visualization, multi-dimension reduction.

Chee Siong Teh, Ming Leong Yii, and Chwen Jen Chen are with the Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia (e-mail: csteh@fcs.unimas.my, yiimingleong@gmail.com, cjchen@fcs.unimas.my).

[PDF]

Cite: Chee Siong Teh, Ming Leong Yii, and Chwen Jen Chen, "Dimensional Reduction and Data Visualization Using Hybrid Artificial Neural Networks," International Journal of Machine Learning and Computing vol.5, no. 5, pp. 420-425, 2015.

Copyright © 2008-2015. International Journal of Machine Learning and Computing. All rights reserved.
E-mail: ijmlc@ejournal.net