• Jun 14, 2017 News!Vol.6, No.3 has been indexed by EI(Inspec)!   [Click]
  • May 03, 2016 News!Vol.5, No.5 has been indexed by EI(Inspec)!   [Click]
  • May 03, 2016 News!Vol.5, No.4 has been indexed by EI(Inspec)!   [Click]
General Information
    • ISSN: 2010-3700
    • Frequency: Bimonthly
    • DOI: 10.18178/IJMLC
    • Editor-in-Chief: Dr. Lin Huang
    • Executive Editor:  Ms. Cherry L. Chen
    • Abstracing/Indexing: Engineering & Technology Digital Library, Google Scholar, Crossref, ProQuest, Electronic Journals Library, DOAJ and EI (INSPEC, IET).
    • E-mail: ijmlc@ejournal.net
Editor-in-chief
Dr. Lin Huang
Metropolitan State University of Denver, USA
It's my honor to take on the position of editor in chief of IJMLC. We encourage authors to submit papers concerning any branch of machine learning and computing.
IJMLC 2014 Vol.4(1): 99-105 ISSN: 2010-3700
DOI: 10.7763/IJMLC.2014.V4.394

Analysis of Some Algorithms for Clustering Data Objects

Mohamed Nour Elsayed and Monzer Mohamed Qasem
Abstract—The main objective of clustering is to partition a set of objects into groups or clusters. The objects within a cluster are more similar to one another than those of the others clusters. This work analyzes, discusses and compares three clustering algorithms. The algorithms are based on partitioning, hierarchical, and swarm intelligence approaches. The three algorithms are k-means clustering, hierarchical agglomerative clustering, and ant clustering respectively. The algorithms are tested using three different datasets. Some measurable criteria are used for evaluating the performance of such algorithms. The criteria are: intra-cluster distance, intercluster distance, and clustering time. The experimental results showed that the k-means algorithm is faster and easily understandable than the other two algorithms. The k-means algorithm is not capable of determining the appropriate number of clusters and depends upon the user to identify this in advance. The ease of handling of any forms of similarity or distance is one of the advantages of the hierarchical clustering algorithm. The disadvantage involves the embedded flexibility regarding the granularity level.
   The ant-clustering algorithm can detect the more similar data for larger values of swarm coefficients. The performance of the ant clustering algorithm outperforms the other two algorithms. This occurs only for the better choice of the swarm parameters; otherwise the agglomerative hierarchical clustering is the best.

Index Terms—Datasets, hierarchical clustering, partitioning clustering, swarm intelligence.

Mohamed Nour Elsayed is with the Electronics Institute, Cairo, Egypt (e-mail: mnour99@hotmail.com). Monzer Mohamed Qasem is with the Information Systems Department, Princess Nourah University, Riyadh, KSA.

[PDF]

Cite:Mohamed Nour Elsayed and Monzer Mohamed Qasem, "Analysis of Some Algorithms for Clustering Data Objects," International Journal of Machine Learning and Computing vol.4, no. 1, pp. 99-105, 2014.

Copyright © 2008-2015. International Journal of Machine Learning and Computing. All rights reserved.
E-mail: ijmlc@ejournal.net