• Jul 03, 2017 News!Good News! Since 2017, IJMLC has been indexed by Scopus!
  • Aug 15, 2017 News![CFP] 2017 the annual meeting of IJMLC Editorial Board, ACMLC 2017, will be held in Singapore, December 8-10, 2017.   [Click]
  • Sep 09, 2017 News!Vol.7, No.4 has been published with online version.   [Click]
Search
General Information
Editor-in-chief
Dr. Lin Huang
Metropolitan State University of Denver, USA
It's my honor to take on the position of editor in chief of IJMLC. We encourage authors to submit papers concerning any branch of machine learning and computing.
IJMLC 2011 Vol.1(5): 528-533 ISSN: 2010-3700
DOI: 10.7763/IJMLC.2011.V1.79

A Bayesian Network Approach for Causal Action Rule Mining

Pirooz Shamsinejad and Mohamad Saraee
Abstract—Actionable Knowledge Discovery has attracted much interest lately. It is almost a new paradigm shift toward mining more usable and more applicable knowledge in each specific domain. Action Rule is a new tool in this research area that suggests some actions to user to gain a profit in his/her domain. Up to now some methods have been devised for action rule mining. Decision Trees, Classification Rules and Association Rules are three learner machines that already have been used for action rule mining. But when we want to suggest an action we need to know the causal relationships among parameters and current methods can’t say anything about that. So that we use here Bayesian Networks as one of the most powerful knowledge representing models that can show the causal relationships between variables of interest for extracting action rules. Another benefit of new method is about the background knowledge. Bayesian Networks are very powerful at integrating the background knowledge into model. At the end of this paper an action rule mining system is proposed that can suggest the most profitable action rules for each case or class of cases.

Index Terms—Actionable Knowledge Discovery, Action Rule Mining, Bayesian Networks, Causal Action Rule.

Pirooz Shamsinejad is a Ph.D. candidate at Electrical and Computer Engineering Department of Isfahan University of Technology, Isfahan, Iran (e-mail: p_shamsinejad@ec.iut.ac.ir). Mohammad Saraee is the founder and Director of the Intelligent Databases, Data Mining and Bioinformatics Research Centre.

[PDF]

Cite:Pirooz Shamsinejad and Mohamad Saraee, "A Bayesian Network Approach for Causal Action Rule Mining," International Journal of Machine Learning and Computing vol.1, no. 5, pp. 528-533, 2011.

Copyright © 2008-2015. International Journal of Machine Learning and Computing. All rights reserved.
E-mail: ijmlc@ejournal.net